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Single Locus Association Analysis

2.1 Introduction

The simplest methods of genetic association analysis originate from
case-control study designs used by epidemiologists to identify vari-
ables associated with a disease state. The basic premise is that DNA
polymorphisms influencing individual disease susceptibility will dis-
play different frequencies in cases versus controls. From this perspec-
tive, genes are simply another potential disease covariate. This chapter
considers a variety of such case-control methods that have been em-
ployed in genetic association studies. The methods make few explicit
assumptions regarding the phenotypic effects of genes and instead rely
on simple comparisons of proportions of particular genetic polymor-
phisms in cases versus controls, and so on, to detect differences that
are expected to occur under virtually any models in which a locus is
involved in disease susceptibility. Implicit assumptions of the meth-
ods typically include random sampling of individuals, random mating
(Hardy-Weinberg equilibrium of genotypes), etc. Although the type I
error of such tests usually does not depend on a model of gene effects,
the power (type II error) typically does. Models and simulation meth-
ods for predicting the power of association studies will be discussed in
Chapter 6.

The techniques presented here fall into the statistical realms of cat-
egorical data analysis (in the case of discrete disease states) discussed
in the first portion of the chapter, and linear analysis (in the case of
continuous disease phenotypes) discussed in the second portion. The
statistical tests themselves fall into a natural hierarchy beginning with
those based on the simplest models (with few parameters) and extend-
ing to those involving progressively more complex models (with many
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more parameters). Typically, a trade-off exists between the enhanced
power of tests based on models with fewer parameters (e.g., those with
fewer degrees of freedom) and those examining more complex, but po-
tentially more realistic, models. A disadvantage of simple (parameter
poor) models is that they may be more sensitive to so-called “spuri-
ous associations.” Namely, those associations due not to an effect of the
gene on a disease outcome but to the effects of other mutual covariates.
More complex (parameter rich) models may account for such poten-
tially confounding covariates, but at the cost of additional modeling
assumptions.

In this chapter, we generally ignore the complexities arising from
linkage disequilibrium (see Chapter 3) and proceed as if the locus under
investigation were the actual causal locus influencing disease risk. Most
of the methods can be expected to work reasonably well even when the
association is due to indirect linkage to an undiscovered disease poly-
morphism. The first part of the chapter presents several simple tests for
Hardy-Weinberg equilibrium (HWE) that may be applied to samples of
cases or controls. Such tests should be carried out as an initial phase
of exploratory data analysis. Departures from HWE may reveal excess
genotyping errors at a locus, cryptic population substructure, etc. We
reserve the discussion of disease association tests based on departures
from HWE in cases versus controls until Chapter 4 as linkage disequi-
librium (introduced in Chapter 3) is an important consideration in such
tests that cannot be ignored.

2.2 Discrete disease states

Here, we consider tests of genetic association for a situation in which
disease states are discrete (binary). In particular, we focus on case-control
studies in which a disease is classified as either present (case) or absent
(control). We assume that individuals are sampled at random from a
defined population and consider a SNP locus with two alleles labeled
1 and 2. In most studies of single nucleotide polymorphisms (SNPs) in
humans only two alleles (nucleotides) are found to be present at each
polymorphic SNP site (presumably due to a recent demographic ex-
pansion of human populations and low rates of mutation in nuclear
DNA). However, if needed the extension to multiple alleles is usually
straightforward. Following the notation of Sasieni (1997), let ri and si
be the sample counts of genotype i in cases and controls, respectively,



26 Single Locus Association Analysis

where i ∈ {0, 1, 2} denotes the number of copies of allele 1 present in
the genotype, and let bi = ri + si. Let R and S be the total number of
cases and controls, respectively, and let N = R + S. The relationship of
these variables is depicted in Table 2.1.

Number of Alleles 0 1 2 Total
Case r0 r1 r2 R
Control s0 s1 s2 S
Total b0 b1 b2 N

Table 2.1 SNP genotype counts for a case-control association study

2.2.1 Testing Hardy-Weinberg equilibrium

As discussed in Chapter 1, one possible indicator of some form of as-
sociation between a marker and disease (whether due to a causal rela-
tionship or a spurious correlate such as cryptic population structure) is
the observed departure of genotype frequencies from Hardy-Weinberg
equilibrium (HWE) proportions. In particular, genetic association can
cause a deviation from HWE among cases. Deviations from HWE may
also be symptomatic of other problems with the data, however, such as
genotyping errors (Xu et al., 2002). One should be particularly cautious
when such deviations occur in the sample of controls.

Likelihood ratio test of HWE
Here, we describe a likelihood ratio test (LRT) of HWE for a sample
of cases. The application to controls involves a straightforward substi-
tution of variables (si for ri, S for R, etc). Under the model of HWE,
with SNP allele 1 having frequency p, the probability of the sample of
genotypes in cases is

L0 =
(

R!
r0!r1!r2!

) [
p2
]r0

[2p(1− p)]r1
[
(1− p)2

]r2
. (2.1)

Under the alternative hypothesis, the genotype proportions g0, g1 and
g2, where the subscript denotes the number of copies of allele 1, are not
constrained by HWE and the sample probability is

L1 =
(

R!
r0!r1!r2!

)
gr0

0 gr1
1 gr2

2 , (2.2)
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where g2 = 1− g0 − g1. There is a single free parameter, p, to be esti-
mated under the null hypothesis H0 while there are two free parame-
ters, g0 and g1 to be estimated under the alternative hypothesis H1. The
likelihood ratio test statistic Λ is defined as

Λ =
L0

L1
=
[
p̂2]r0 [2p̂(1− p̂)]r1

[
(1− p̂)2]r2

ĝr0
0 ĝr1

1 (1− ĝ0 − ĝ1)r2
,

where

p̂ =
2r0 + r1

2R
and ĝi =

ri
R

,

are maximum likelihood estimates of the parameters under each model.
In this case, model 1 has one more free parameter than model 0 and so
the hypothesis test has one degree of freedom. According to standard
likelihood theory (see e.g., Rice, 1995), the LRT statistic −2 log Λ has a
sampling distribution that is asymptotically χ2 with 1 df under the null
hypothesis.

As an example, suppose that R = 10 cases are sampled in a case-
control study. Let the observed sample configuration be (r0 = 1, r1 =
9, r2 = 0). The value of −2 log Λ calculated from the above formula is
8.547. Under a χ2 distribution with 1 df this value has a tail probability
(significance) of α = 0.0035.

χ2 test of HWE
A χ2 test of HWE can be formulated using the test statistic,

χ2 =
[r0 − p2 × R]2

p2 × R
+

[r1 − 2p(1− p)× R]2

2p(1− p)× R
+

[r2 − (1− p)2 × R]2

(1− p)2 × R
,

where p = (2r0 + r1)/(2R). There are two free observations (e.g., r0 and
r1) and one estimated parameter, p, so the test has 2− 1 = 1 df. Ana-
lyzing the genotype data from the previous example, with observed
sample configuration (r0 = 1, r1 = 9, r2 = 0), the value of the χ2 test
statistic is 6.694. Under a χ2 distribution with 1 df this value has a tail
probability (significance) of α = 0.0097.

Exact test of HWE
The LRT and chi-square tests presented above both rely on asymptotic
(large sample) theory to obtain the sampling distribution of the test
statistic and determine significance. These methods may not provide
accurate results for small samples and/or alleles that are in low fre-
quency. Two possible solutions to this problem are to use an exact test
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of HWE (Levene, 1949; Haldane, 1954) or to use Monte Carlo simula-
tion to generate the null distribution of the test statistic (see section 2.2.1
below). Here, we describe an exact test (Levene, 1949) of HWE for a lo-
cus with two alleles. See Louis and Dempster (1987) for an extension to
multiple alleles.

We again consider a test of HWE in the sample of cases (the appli-
cation to controls requires only a change of symbols). The basic objec-
tive of Fisher’s exact test is to calculate the probability of each possi-
ble sample configuration under the null hypothesis of independence
among elements of a contingency table with the marginal frequencies
constrained to equal those observed in the sample. The possible sam-
ples are ranked according to their probabilities and the probabilities of
the observed sample configuration, and all those samples less proba-
ble than the observed sample, are summed to predict the probability of
observing a sample with a probability as small, or smaller, than that of
the observed sample under the null hypothesis. If this tail probability
is small the null hypothesis is rejected.

As noted above, the probability of the observed genotype counts un-
der the null hypothesis is multinomial and can be rearranged to have
the form,

Pr(r0, r1, r2) =
R!

r0!r1!r2!
2r

1 p(2r0+r1)(1− p)(2r2+r1). (2.3)

Let the total allele counts be n1 = 2r0 + r1 and n2 = 2r2 + r1. Assuming
HWE, the marginal probability distribution of the allele counts is

Pr(n1, n2) =
(

2R
n1

)
pn1(1− p)n2 . (2.4)

We now consider the probability of the observed sample configuration
conditioned on the fixed allele counts. The goal is to compare proba-
bilities of all possible sample configurations with the same marginal
probabilities of allele counts (and therefore the same population allele
frequencies). The conditional distribution is obtained by dividing the
joint probability of the sample (and allele counts) from equation 2.3 by
the marginal probability of the allele counts from equation 2.4,

Pr(r0, r1, r2|n1, n2) =
Pr(r0, r1, r2, n1, n2)

Pr(n1, n2)
,

=
R!/(r0!r1!r2!)2r1 pn1(1− p)n2

2n!/(n1!n2!)pn1(1− p)n2
,
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=
R!(2r0 + r1)!(2r2 + r1)!2r1

r0!r1!r2!(2R)!
.

This conditional probability no longer depends on the unknown popu-
lation allele frequency, p. The computational challenge in applying this
method is the neccessity to calculate the probability of every possible
sample configuration with marginal allele counts n1 and n2. A useful
algorithm for enumerating all possible sample configurations is given
by Louis and Dempster (1987). Define the sample configuration to be
(s0, s1, s2). Construct the first sample of the set as either (s0 = 0, s1 =
n1, s2 = (n2 − n1)/2) if n1 ≤ n2 or (s0 = (n1 − n2)/2, s1 = n2, s2 = 0) if
n2 ≤ n1. The next sample is constructed as (s0 + 1, s1 − 2, s2 + 1). This
operation is applied iteratively until either s1 = 0 or s1 = 1. For ni ≤ nj
there will be (ni− 1)/2 + 1 or ni/2 + 1 distinct sample configurations if
ni is odd, or even, respectively. Thus, for a sample of R genotypes from
cases there are at most R/2 distinct sample configurations and the tail
probabilities for the exact test can be rapidly calculated on a modern
computer.

Configuration Probability Rank
(1, 9, 0) 0.0305 4
(2, 7, 1) 0.2744 2
(3, 5, 2) 0.4801 1
(4, 3, 3) 0.2000 3
(5, 1, 4) 0.0150 5

Table 2.2 Table of all possible sample configurations and exact test
probabilities (and relative rank) for fixed marginal allele counts of n1 = 11

and n2 = 9.

Consider the example given previously with sample configuration
(r0 = 1, r1 = 9, r2 = 0). The marginal allele counts are n1 = 2(1) + 9 =
11 and n2 = 2(0) + 9 = 9. The possible sample configurations, condi-
tional on the marginal allele counts, are shown in Table 2.2, along with
the exact probability of each sample configuration. In this example,
the observed sample configuration is ranked 4th in terms of its exact
probability. Thus, the probability of seeing a sample with a probability
this small (or smaller) under the null hypothesis of HWE proportions
is 0.0305 + 0.0150 = 0.0455. Thus the null hypothesis of HWE can be
rejected at the α = 0.05 level for these data.
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Null distributions via Monte Carlo
The exact test of HWE outlined above requires that one enumerate
all possible sample configurations, conditional on the marginal allele
counts. For a locus with two alleles this exhaustive enumeration is fea-
sible (even for large samples) since the number of possible configura-
tions is never more than R/2. If more than about 5 alleles exist at a locus
exhaustive enumeration is no longer feasible and a Monte Carlo simu-
lation method must be used instead. Here, we consider a Monte Carlo
method proposed by Guo and Thompson (1992) for m alleles. For sim-
plicity, we describe the algorithm with only 2 alleles here; the extension
to m alleles is straightforward (see Guo and Thompson, 1992). Usually,
this algorithm is not needed for SNP loci and is most often applied to
highly polymorphic markers such as microsatellites. However, if one is
interested in testing for HWE among haplotypes (with distinct haplo-
types equivalent to alleles) a Monte Carlo method may be needed when
many haplotypes are present in a population. As shown in the previous
section, the probability of the sample of genotypes, conditional on the
marginal allele counts is,

Pr(r0, r1, r2) =
R!(2r0 + r1)!(2r2 + r1)!2r1

r0!r1!r2!(2R)!

The probability for the exact test of HWE is given by

P = ∑
s

Pr(s),

where s = (s0, s1, s2) is the set of all possible sample configurations with
the same marginal allele counts as the observed sample r = (r0, r1, r2)
and for which Pr(s) ≤ Pr(r). A Monte Carlo estimator of P is obtained
as follows. First, create a vector v of length X = n1 + n2, with the first n1
elements set to be allele 1 and the remaining n2 elements set to be allele
2. Initialize variables K = 0 and i = 0. Define Z to be the number of
iterations for the Monte Carlo analysis. Apply the following algorithm:

1. Randomly permute the elements of vector v so that the probability
that an element occupies any particular position in the vector after
the permutation is 1/X.

2. Create a genotype vector of length X/2 by splitting the elements of
vector v into pairs (genotypes) such that

w∗k = {(v2k−1, v2k), k = 1, 2, . . . , X/2} .
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3. Let s∗ be the genotype counts for vector w∗. If

Pr(s∗) ≤ Pr(r),

then K = K + 1, otherwise K = K.
4. If i < Z then i = i + 1, return to step 1. Otherwise P = K/Z, exit

algorithm.

To illustrate this algorithm, we apply it to the example given in Sec-
tion 2.2.1. In this example, r = (r0 = 1, r1 = 9, r2 = 0) so that n1 = 11
and n2 = 9. Five random permutations and the resulting sample con-
figurations for data with these marginal counts are shown in Table 2.3.
Three separate Monte Carlo analyses were done for the sample r =

Random Permutation (v) s∗ = (s0, s1, s2) Pr(s∗)
(1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2) (3, 3, 4) 0.200
(1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2) (3, 5, 2) 0.480
(1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2) (2, 7, 1) 0.274
(2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1) (3, 5, 2) 0.480
(1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2) (3, 5, 2) 0.480

Table 2.3 Table of sample configurations, s∗, and exact test probabilities,
Pr(s∗), for each of 5 random permutations, v, with fixed marginal allele

counts of n1 = 11 and n2 = 9.

(1, 9, 0), each with Z = 10, 000 replicates. The estimates of the proba-
bility for the test were P1 = 0.0449, P2 = 0.0441, and P3 = 0.0471. The
exact value is P = 0.0455 and so the Monte Carlo estimates are accurate
to the second decimal place. The accuracy of the Monte Carlo estimate
can be increased by increasing the number of replicates. For example,
with Z = 5 × 105 we obtain P4 = 0.045558 which is accurate to the
4th decimal place. Note that a similar Monte Carlo methodology could
be used to generate the sampling distribution of the likelihood ratio
and χ2 tests described previously, potentially improving their statisti-
cal performance for small samples. Methods for predicting the error
(and confidence intervals) of Monte Carlo estimates are discussed in
Chapter 7.

Distributions of test statistics using discrete data
A well-known feature of statistical tests based on discrete data is that
the true sampling distribution of the test statistic is also discrete. The
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χ2 test of HWE described above uses a continuous distribution (the chi-
square distribution) as an approximation to the discrete sampling dis-
tribution. The accuracy of this approximation depends on factors such
minor allele frequency (MAF) and sample size (Rohlfs and Weir, 2008).
The exact test also has a discrete sampling distribution for the test statis-
tic. An improvement of the χ2 test statistic was suggested by (Yates,
1934). The Yates correction for continuity improves the performance of
the χ2 test when the counts in one or more elements of the contingency
table are small (this could be due to low MAF, small sample size, ex-
treme departures from HWE, etc), making the test more conservative.
The Yates correction subtracts 1/2 from each of the squared differences
between expected and observed values,

χ2 = ∑(|Obs− Exp| − 0.5)2

Exp
.

One important consequence of the discreteness of the sampling distri-
bution is that the distribution of p-values is not uniform. This is evident
by examining the distribution of the p-values for all possible sample
configurations enumerated under the exact test (see table 2.2). This can
lead to anomalous outcomes. For example, if the sample configuration
with the smallest p-value has p = 0.10 and a significance threshold of
p ≤ 0.05 is chosen the test will never reject (has power 0) and the type I
error will be too large, whereas if p ≤ 0.10 is chosen as the significance
threshold the test will have the correct type I error and non-zero power.
One proposed solution to this problem is to use a stochastic decision
process. In the above example, this would involve randomly accepting
half the outcomes with p ≤ 0.10 to achieve a significance of p ≤ 0.05.
However, as noted by Rohlfs and Weir (2008) this could lead to differ-
ent outcomes for parallel analyses of the same data set, which is not
very appealing to scientists.

2.2.2 Allele frequencies in cases versus controls

A first step in a GWAS is often a locus-by-locus analysis for associa-
tions between SNP allele frequency at each locus and disease status. An
important distinction between methods for testing allelic association is
whether or not the genotypes are assumed to be in Hardy-Weinberg
equilibrium. We begin by considering simple tests that assume HWE
and then describe several additional tests that do not.
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Likelihood ratio test assuming HWE
We first consider a likelihood ratio test comparing allele frequencies at a
given locus in cases versus controls. Let a1 = r1 + 2r2 and a2 = r1 + 2r0
be the number of copies of alleles 1 and 2, respectively, in cases and let
m1 = s1 + 2s2 and m2 = s1 + 2s0 be the number of copies of alleles 1 and
2, respectively, in controls. Let p and q be the population frequencies of
allele 1 in cases and controls, respectively. If we assume that the chro-
mosomes represent a random sample from a large population (or that
individuals are sampled at random and their genotypes are in Hardy-
Weinberg equilibrium at the locus) then the sampling distribution of
alleles follows a multinomial distribution. Under the null hypothesis
that allele frequencies at this locus are identical in cases and controls
c = p = q, there is one free parameter, c, and

Pr(a1, m1, a2, m2) =
(2R)!(2S)!

a1!a2!m1!m2!
c(a1+m1)(1− c)(a2+m2).

The maximum likelihood estimate of the population frequency of allele
1 among both cases and controls is

ĉ =
a1 + m1

2N
.

Under the alternative hypothesis that allele frequencies differ between
cases and controls p 6= q so that there are two free parameters, p and q,

Pr(a1, m1, a2, m2) =
(2R)!(2S)!

a1!a2!m1!m2!
pa1(1− p)a2 qm1(1− q)m2 .

The maximum likelihood estimates of the population frequencies of al-
lele 1 in cases and controls, respectively, are

p̂ =
a1

2R
and q̂ =

m1

2S
.

The likelihood ratio test statistic Λ is constructed by taking a ratio of
the probability of the data under the null hypothesis to that under the
alternative hypothesis, with maximum likelihood estimates substituted
for the unknown parameters p, q and c,

Λ =
ĉ(a1+m1)(1− ĉ)(a2+m2)

p̂a1(1− p̂)a2 q̂m1(1− q̂)m2
,

=
( a1+m1

2N )(a1+m1)(1− [ a1+m1
2N ])(a2+m2)

( a1
2R )a1(1− [ a1

2R ])a2( m1
2S )m1(1− [ m1

2S ])m2
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The asymptotic distribution of the test statistic −2 log Λ follows that of
a χ2 distribution with 1 degree of freedom (the difference in the number
of free parameters under the null versus alternative hypotheses). To il-

Genotype
Group A/A A/G G/G Total
IBD 0 21 521 542
Controls 3 70 468 541
Total 3 91 989 1083

Table 2.4 IBD Data

lustrate this test we apply it to a SNP locus, labelled rs11209026, from a
genome-wide association study of a sample of patients with inflamma-
tory bowel disease (IBD) and a sample of controls (Duerr et al., 2006).
This SNP (A/G) polymorphism results in a change of the amino acid
at position 381 (Arg/Gln) of the proinflammatory cytokine interleukin-
23. The genotype counts in a non-Jewish case-control cohort are given
in Table 2.4. In this example, the observed values are 2R = 1084, 2S =
1082, a1 = 21, a2 = 1063, m1 = 76 and m2 = 1006. The test statistic is
−2 log Λ = 34.69 and the probability of a value at least as great as this
under the null hypothesis (the tail probability for a χ2 distribution with
1 df) is 3.87× 10−9.

χ2 test assuming HWE
A χ2 test of the hypothesis that allele proportions are equal among cases
and controls is asymptotically equivalent to the test outlined above. The
χ2 test statistic is

χ2 =
(Ocases − Ecases)2

Ecases
+

(Ocontrols − Econtrols)2

Econtrols
,

where

Ecases = 2Rĉ =
R
N

(a1 + m1) and Ocases = a1

are the expected and observed counts of the allele among cases and

Econtrols = 2Sĉ =
S
N

(a1 + m1) and Ocontrols = m1

are the expected and observed counts of the allele among controls. The
test has 1 degree of freedom which is obtained as the difference between
the number of free observations (2), given the total sample size, and
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the number of estimated proportions (1), so that d f = 2− 1 = 1. The
value of the χ2 test statistic for the IBD data is 31.28 which has tail
probability 1.92 × 10−8. Thus, there is a highly significant difference
in allele frequency between IBD cases and controls at this locus. In this
example, the observed number of copies of the allele in cases (Ocases =
21) is less than the expectation under the null hypothesis (Ecases = 48.5)
and the authors conclude that the A allele of the IL23R gene may be
protective against IBD.

Hardy-Weinberg disequilibrium
The tests outlined in the previous section assume that population geno-
type frequencies are in HWE proportions. If this assumption is violated
the type-I error rate may be incorrect. Schaid and Jacobsen (1999) pro-
posed an alternative test for differences in allele frequencies between
cases and controls that allows a deviation of genotype frequencies from
HWE. Let A and a be 2 alleles at a locus with population frequencies
p and 1 − p, respectively. Let xi be the number of copies of allele A
(either 0, 1, or 2) in the genotype of individual i. Assuming HWE, the
probabilities of the 3 possible genotypes are

Pr(xi = 0) = (1− p)2,

Pr(xi = 1) = 2p(1− p),

Pr(xi = 2) = p2.

The expected value of xi is

E(xi) =
2

∑
xi=0

xiPr(xi) = 0× (1− p)2 + 1× 2p(1− p) + 2× p2 = 2p,

and the variance is

Var(xi) = E(x2
i )−E(xi)2,

=
2

∑
xi=0

x2
i Pr(xi)− (2p)2,

= 2p(1− p) + 4p2 − (2p)2,

= 2p(1− p).

The maximum likelihood estimator of allele frequency is

p̂ = ∑N
i=1 xi

2N
,
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which has the expected value

E( p̂) =
1

2N

N

∑
i=0

E(xi) =
N × 2p

2N
= p,

and the variance,

Var( p̂) = Var

(
∑N

i=0 xi

2N

)
,

=
1

4N2

N

∑
i=0

Var(xi),

=
1

4N2 × N × 2p(1− p),

=
p(1− p)

2N
.

Let pd and pc be the population frequencies of allele A in cases and
controls, respectively, and let Nd and Nc be the sample sizes. For large
samples the normal distribution approximation for the binomial distri-
bution implies that the probability distribution of the sample allele fre-
quency in cases and controls follows a normal distribution with means
pd and pc, and variances pd(1 − pd)/(2Nd) and pc(1 − pc)/(2Nc), in
cases and controls, respectively. The test statistic is

z =
( p̂d − p̂c)√

V
(2.5)

Under the null hypothesis the frequency of A is identical in cases and
controls so that pd = pc = p. The expectation of z is therefore

E( p̂d − p̂c) = E( p̂d)−E( p̂c) = p− p = 0,

and the variance of z is 1 if we set

V = Var( p̂d − p̂c) = Var( p̂d) + Var( p̂c),

=
p(1− p)

2Nd
+

p(1− p)
2Nc

,

= p(1− p)
(

1
2Nd

+
1

2Nc

)
.

The test statistic in equation 2.5 thus follows a standard normal dis-
tribution under the null hypothesis (assuming HWE genotype propor-
tions).
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We now consider the situation when the population genotype fre-
quencies are not in HWE proportions. Let F be an inbreeding coefficient
that quantifies the degree of departure of genotype frequencies from
HWE. The probabilities of the 3 possible genotypes under this model
are

Pr(xi = 0) = (1− F)(1− p)2 + (1− p)F,

Pr(xi = 1) = 2p(1− p)(1− F),

Pr(xi = 2) = (1− F)p2 + pF.

The expected value of xi is

E(xi) = xiPr(xi),

= 0× [(1− p)2(1− F) + (1− p)F] +

1× [2p(1− p)(1− F)] + 2× [p2(1− F) + pF]

= 2p,

and the variance is

Var(xi) = E(x2
i )−E(xi)2,

=
2

∑
xi=0

x2
i Pr(xi)− (2p)2,

= 02 × [(1− p)2(1− F) + (1− p)F] +

12 × [2p(1− p)(1− F)] + 22 × [p2(1− F) + pF]

= 2p(1− p)(1 + F).

The mean and variance of p̂ for either cases or controls with a deviation
from HWE are E( p̂) = p and

Var( p̂) = Var

(
∑N

i=1 xi

2N

)
,

=
1

4N2

N

∑
i=1

Var(xi),

=
1

4N2 × N × 2p(1− p)(1 + F),

=
1

2N
p(1− p)(1 + F).

Thus, the variance V for normalizing the test statistic under the null
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hypothesis when HWE is violated is

VnonHWE = [p(1− p)(1 + F)]
(

1
2Nd

+
1

2Nc

)
. (2.6)

Setting fAA = p2(1− F) + pF and solving for F gives,

F =
( fAA − p2)

p(1− p)
,

and substituting for F in equation 2.6 gives

VnonHWE = [p(1− p) + ( fAA − p2)]
(

1
2Nd

+
1

2Nc

)
,

which matches the formula for the “pooled variance” model given in
Schaid and Jacobsen (1999). Thus, the variance of the sampling distri-
bution of the test statistic is increased when there are departures from
HWE proportions so that using the variance derived under an assump-
tion of HWE will increase the probability of rejecting the null hypothe-
sis and inflate the type-I error over the nominal value.

Schaid and Jacobsen (1999) suggested estimating the HWE deviation
δ = fAA− p2 from the pooled genotypes of both cases and controls and
using the bias-corrected variance VnonHWE in calculating the test statis-
tic. They also suggested an alternative estimator of the bias-corrected
variance obtained by separately calculating p and fAA in cases and con-
trols and then estimating the total variance as the sum

VNonHWE = VNonHWE,d + VNonHWE,c.

Knapp (2001) suggested that this second “separate variance” formula
for calculating VNonHWE is preferable and will result in more power-
ful test with lower type-I error. He also pointed out that the square of
the test statistic, z, calculated using the pooled variance estimator of
VNonHWE, is identical to the test statistic of Armitrage’s trend test (see
Section 2.2.4) so the two tests are equivalent.

2.2.3 Genotypes in cases versus controls

A genotype-based association test does not assume HWE of genotype
frequencies and will be sensitive to differences of genotype proportions
between cases and controls due to either deviations from HWE, differ-
ences of allele frequency, or both.
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Likelihood ratio test of genotype association
Let gi and hi be the population frequencies of genotype i in cases and
controls, respectively. Under the null hypothesis there is no difference
of genotype frequencies between cases and controls so that ci = gi = hi
for all i = 0, 1, 2 and there are 2 free parameters c0 and c1 because the
genotype frequencies must sum to 1 and therefore c2 = 1− c0− c1. The
probability of the sampled genotypes under the null hypothesis is

Pr(r0, r1, r2, s0, s1, s2) =
(

R!
r0!r1!r2!

)(
S!

s0!s1!s2!

) 2

∏
i=0

cni
i ,

and the maximum likelihood estimator of parameter ci is

ĉi =
ri + si

N
.

Under the alternative hypothesis the genotype frequencies are differ-
ent in cases versus controls so that gi 6= hi for all i = 0, 1, 2 and there
are 4 free parameters g0, g1, h0 and h1. The probability of the sampled
genotypes under the alternative hypothesis is

Pr(r1, r2, r3, s1, s2, s3) =
(

R!
r1!r2!r3!

)(
S!

s1!s2!s3!

) 2

∏
i=0

gri
i hsi

i ,

and the maximum likelihood estimators of parameters gi and hi are

ĝi =
ri
R

and ĥi =
si
S

.

The likelihood ratio test statistic is

Λ =
2

∏
i=0

(
ĉ(ri+si)

i

ĝri
i ĥsi

i

)
,

and

−2 log Λ = −2
2

∑
i=0

[
(ri + si) log

(
ri + si

N

)
− ri log

( ri
R

)
− si log

( si
S

)]
(2.7)

which has an asymptotic distribution that is χ2 with 2 degrees of free-
dom (the difference in the number of free parameters between the null
and alternative hypotheses is 4− 2 = 2).

To illustrate this test we apply it to the data of Duerr et al. (2006) for
SNP locus rs11209026 of the IBD case-control study considered previ-
ously. The genotype counts are presented in Table 2.4. Applying equa-
tion 2.7 to these data we obtain −2 log Λ = 34.84. The significance of
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this result (using the tail probability from a χ2 distribution with 2 df) is
2.73× 10−8.

χ2 test of genotype association
A chi-square test may be formulated that is asymptotically equivalent
to the LRT. The chi-square test statistic is

χ2 =
2

∑
i=0

(
O(i)

cases − E(i)
cases

)2

E(i)
cases

+

(
O(i)

controls − E(i)
controls

)2

E(i)
controls

,

where

E(i)
cases =

R
N

(ri + si) and O(i)
cases = ri,

and,

E(i)
controls =

S
N

(ri + si) and O(i)
controls = si.

The chi-square test statistic has an asymptotic distribution that is χ2

with 2 df (the difference between the number of free observations, 4,
and the number of estimated proportions, 2). For the IBD data pre-
sented in Table 2.4 the test statistic is χ2 = 32.22 which has tail proba-
bility of 1.01× 10−7.

2.2.4 Score tests for disease trends

The tests for allele-disease, or genotype-disease, association described
above do not specify any particular relationship between the number of
allele copies present in a genotype and the risk of disease. It is reason-
able to assume that the number of copies of the allele may be an impor-
tant factor influencing disease risk and incorporating this assumption
can lead to a more powerful test. The Cochrane-Armitage test (CATT)
(Armitage, 1955; Cochran, 1954) can be used to introduce a score for
each genotype that is a function of the number of allele copies. Further-
more, if the mode of disease inheritance is known (in the case of simple
Mendelian disorders, for example), a score function can be chosen that
provides optimal power for the CATT under a particular genetic model.
The CATT essentially involves a regression of the frequency of cases in
each genotype class (e.g., homozygous, heterozygous, etc) against the
score for the class. A significant association indicates a relationship be-
tween the disease frequency and genotype score. Incorporating such
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relationships (when they exist) into the model used for a test of associ-
ation increases the power of the test (Sasieni, 1997). The scoring func-
tion used in this test is subjective but can be chosen to mimic specific
models of allelic effect.

Following (Sasieni, 1997) let the genotypes g0 = aa, g1 = Aa and
g2 = AA be represented by scores (0, x, 1) for (g0, g1, g2), where 0 ≤
x ≤ 1. The values x = 0, x = 1/2 and x = 1 correspond to optimal
choices of x for a recessive, additive (or multiplicative) and dominant
model of allele effect on disease risk, respectively (Zheng et al., 2003).
The CATT score statistic is

Z2
x =

N{∑2
i=0 xi(Sri − Rsi)}2

RS{N ∑2
i=0 x2

i ni − (∑2
i=0 xini)2}

. (2.8)

Under the null hypothesis, H0, that no association exists between the
genotype and disease risk the allele frequencies are equal in case and
control samples, qi = pi for i = 0, 1, 2, where pi and qi denote the pop-
ulation frequencies of genotype i in controls and cases, respectively. If
H0 is true then the sampling distribution of Z2

x is asymptotically a χ2
1

distribution. One difficulty in applying this test to data from genome-
wide association studies is that the model of allelic effect is unknown
(e.g., x is unknown). If x is incorrectly specified the type I error will re-
main correct but the power may be reduced (e.g., the type II error rate
may be inflated).

To illustrate the CATT we apply it to the IBD data of Duerr et al.
(2006) in Table 2.4 under each of the three genetic models. Under the
additive and recessive models, the score statistics are Z2

1/2 = 32.18 and
Z2

1 = 31.61, respectively, which are both highly significant (e.g., a value
of 3.84 or greater is significant at the α = 0.05 level for a χ2

1 distribution).
Under the complete dominance model, the score statistic is Z2

0 = 3.014,
which is not significant at the α = 0.05 level.

A CATT analysis using one particular score function (genetic model)
is not robust when analyzing complex genetic diseases for which the
underlying genetic model is unknown. Freidlin et al. (2002) studied
the properties of several approaches to the development of robust tests
when the true model is unknown. Zheng and Ng (2008) advocated a
two-phase analysis strategy that uses the difference of Hardy-Weinberg
disequilibrium coefficients (see Weir, 1996) between cases and controls
to choose a genetic model followed by a CATT test of association using
the optimal model chosen in the first phase of analysis.
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2.3 Continuous disease states

Many complex traits that play a role in human disease arise from mea-
surements on individuals (or functions of measurements), such as the
body mass index (BMI) used as a phenotype measure in obesity re-
search. The approaches described in section 2.2 are for use with dis-
crete phenotype variables such as a binary variable describing disease
outcome. It is possible to accommodate continuous measurement data
using such methods by truncating the variable into 2 or more discrete
classes. For example, physicians use thresholds for the BMI to catego-
rize individuals as normal, overweight or obese. Information may be
lost by carrying out such transformations, however, and it is frequently
better to make explicit use of continuous variables in an analysis. Here
we consider several methods for detecting associations between SNP
alleles and continuous phenotype measures with the aim of determin-
ing whether a particular locus influences a phenotype.

The classical population genetics approach to model continuous traits,
known as quantitative genetics (see section 1.6), assumes that continu-
ous trait variation arises through the effects of many genes, each with
relatively small effect, and of the environment. Let xijk be the allele
present in individual i at SNP j that was inherited from the father (k =
1) or the mother (k = 2). Let Pi denote the phenotype of individual
i, and let ε denote the effect of environment. Given the individual’s
genome and environment the phenotype is predicted by the equation,

Pi =
2

∑
k=1

L

∑
j=1

xijk + D + I + ε.

The first term of the equation models “additive effects” of alleles, while
the terms D and I incorporate the non-additive gene effects (dominance
and epistasis). The main effects are deterministic (non-random) while
the environmental influences are assumed to be due to unknown ran-
dom factors and are modeled such that ε follows a normal distribution
with mean 0 and variance σ2. This is the same basic model that is used
in linear regression to predict the value of a random variable that is a
deterministic linear function of a predictor variable plus a random er-
ror component (the errors are equivalent to environmental deviations
under the genetic model and the predictor variable is the genotype).
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2.3.1 Linear regression

Treating the effect of alleles at locus j as additive and subsuming the
genetic effects at other (possibly unstudied) loci, as well as dominance
and epistasis effects, into the random “environment” term, the stan-
dard regression equation can be used to predict individual phenotypes
based on the genotype at locus j,

Pi = β jyij + εi,

where β j is a parameter that summarizes the relative effect of each al-
lele copy at locus j on the phenotype, yij = {0, 1, 2} denotes the number
of copies of the allele possessed by individual i, and εi is a normal ran-
dom variable representing the “random” effects on phenotype of envir-
onment, additional causal loci, etc. The intercept term is dropped here
because variables can always be transformed by subtracting a constant
so that the intercept becomes zero. By applying standard linear regres-
sion with the genotype at locus j, yj = {yij}, as the predictor (indepen-
dent) variable and the phenotype P = {Pi} as the dependent variable
one can test whether, for example, β j > 0, and one can use the squared
correlation coefficient R2 to predict the proportion of phenotypic vari-
ation that is attributable to the additive effects of allele copy number at
locus j.

To illustrate this approach, we consider a recent study by van Vliet-
Ostaptchouk et al. (2008) that examined the association between SNP
polymorphisms in the TUB gene, measures of body composition (weight,
BMI, etc), and eating behavior in middle-aged women. The TUB gene
(and tubby protein that it encodes) is known to be expressed in regions
of the hypothalamus involved in regulating appetite and satiety. A loss-
of-function mutation in tubby results in late-onset diabetes, insulin re-
sistance, and related phenotypes in mice. van Vliet-Ostaptchouk et al.
(2008) genotyped three SNP loci in 1680 middle-aged Dutch women
who were subjected to anthropometry and a macronutrient intake ques-
tionnaire. A linear regression analysis was performed regressing the
anthropometrical characteristics of the women against the genotypes
at each locus. Table 2.5 shows several of the results for locus rs1528133.
Two significant associations were identified at the α = 0.05 level. These
were between either weight or BMI and the rs1528133 genotype. There
is a positive association of both BMI and weight with the number of
copies of the C allele at this locus; individuals that were either het-
erozygous A/C or homozygous C/C had a slightly elevated weight
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Phenotype Mean ± SD β 95% CI p-value
Weight (kg) 69.56± 0.30 1.88 (0.27, 3.48) 0.02
Waist (cm) 83.13± 0.26 1.23 (−0.17, 2.64) 0.09
Hip (cm) 105.13± 0.22 1.10 (−0.07, 2.27) 0.06
BMI (kg/m2) 25.81± 0.11 0.56 (0.00, 1.12) 0.05

Table 2.5 Summary of the results of a linear regression analysis of several
body composition measures for middle-aged Dutch women against the
genotypes at SNP locus rs1528133. The paramater β is the slope of the

regression line.

(an increase of +1.88 kg per copy of allele C). However, associations at
the α = 0.05 are marginal and the significant results in this study would
disappear, for example, if one were to correct for multiple testing (the
analysis of 3 SNP loci) using a Bonferroni correction (see section 2.5)

2.3.2 Multiple regression

The regression approach for analyzing continuous phenotypes can be
extended to allow multiple predictor variables that are potential phe-
notypic covariates using standard multiple regression procedures (see
e.g., Abraham and Ledolter, 2006). Let Pi be the phenotype measured
for individual i and let x1(i), . . . , xp(i) be measurements of p traits, for
individual i, suspected to influence the phenotype. Assuming a stan-
dard linear model, the phenotype of individual i is modeled as

Pi = β1x1(i) + β2x2(i) + · · ·+ βp(i)xp(i) + εi.

Note that one or more of the x’s may be gene counts at SNP loci and
other traits could include environmental factors, or other measurable
factors of potential relevance. The coefficients β1, . . . , βp are estimated
by finding the values that minimize the squared difference between ob-
served and predicted phenotypic values. The squared difference can be
expressed in matrix form as

S(β) = (P− Xβ)′(P− Xβ),

where

P′ =
[

P1 P2 · · · Pn
]

,

β′ =
[

β1 β2 · · · βp
]

,
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and

X =

 x1(1) x2(1) · · · xp(1)
...

...
...

x1(n) x2(n) · · · xp(n)


Univariate linear regression is a special case of this more general re-
gression method (with p = 1). Standard methods can be used to test
whether any particular regression coefficient βi is significantly differ-
ent from zero; this indicates whether predictor variable i influences
phenotype. If a genetic variant is only indirectly associated with the
phenotype (namely, it covaries with one of the factors and that factor
is a predictor of phenotype) then including the factor in the multiple
regression analysis can remove the effect of mutual covariance and re-
duce the apparent association between the genetic variant and the phe-
notype. This increases the likelihood that detected genetic associations
are causal rather than spurious.

As an example, the population association study of Lanktree et al.
(2009) replicated several previously identified associations between SNP
polymorphisms in various genes (including LPL and APOE) and lipopro-
tein traits known to be associated with cardiovascular disease such
as high-density lipoprotein (HDL), low-density lipoprotein (LDL) and
triglycerides (TG). These authors used a multiple linear regression model
that included age, sex, BMI and ethnicity as covariates in addition to the
number of risk alleles at the SNP loci.

2.3.3 Analysis of variance

Analysis of variance methods can be used to partition the phenotypic
variance in a regression analysis. The following relationship holds among
the sums of squares:

SST = SSR + SSE,

where,

SST =
n

∑
i=1

(Pi − P)2,

SSE = S(B̂).

The total sum of squares (SST) sums the squared deviations of pheno-
types about the population mean, P = ∑n

i=1 Pi, and the error sum of
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squares (SSE) sums the deviations of phenotypes about the values pre-
dicted using the regression equation with coefficients β̂ estimated from
the data. The regression sum of squares (SSR) is the sum of squared de-
viations removed by the fitting of the regression equation and can be
estimated as

SSR = SST − SSE =
n

∑
i=1

(Pi − P)2 − S(B̂).

The proportion of phenotypic variance explained by the linear regres-
sion is referred to as the coefficient of determination R2 and is estimated
as

R2 =
SSR
SST

= 1− SSE
SST

.

With multiple predictor variables, the proportion of phenotypic vari-
ance explained by the ith predictor variable can be quantified as

∆R2 =
SSRi − SSRi−1

SST
,

where SSRi and SSRi−1 are the regression sum of squares calculated
with (and without) predictor variable i, respectively. The population as-
sociation study of traits associated with cardiovascular disease (Lank-
tree et al., 2009) mentioned in the previous section also quantified the
proportion of lipoprotein trait variation explained by age, sex, BMI and
ethnicity, with and without a set of genetic markers included in the re-
gression. Including all traits and genetic markers the regression model
explained 25% of variation in TG, 34% of variation in HDL and 14%
of variation in LDL. Eliminating the genetic markers from the model
reduced the proportion of variance explained by the model by roughly
3% for LDL, 5% for HDL and 7% for TG. Multiple regression approaches
for modeling the joint effects of multiple loci on phenotype will be dis-
cussed in more detail in Chapter 4.

2.4 Relative risk and the odds ratio

To investigate the causes of a disease phenotype, P, a case-control study
design focusing on a potential genetic risk factor, G, empirically com-
pares f (G|P) versus f (G| 6= P) in searching for genetic factors. This can
be achieved using one or more of the association study approaches out-
lined previously. Once a risk factor has been identified, it is of interest
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to quantify the increase in risk for an individual exposed to the risk fac-
tor. In genetic studies the risk factors are genetic polymorphisms. The
odds ratio and the relative risk are powerful methods for objectively
quantifying the magnitude of disease risk conferred by a factor and are
fundamental measures used by epidemiologists.

2.4.1 Odds ratio

The odds ratio has been independently discovered several times during
the last century, attesting to its importance and generality. Fisher (1935)
studied an odds ratio statistic in the context of proportions of crimi-
nality in monozygtic versus dizygotic twins, Berkson (1953) derived an
odds ratio (logit) in the context of logistic regression methods for ana-
lyzing dose response curves, and Woolf (1955) proposed an odds ratio
as a measure to quantify the disease risk conferred by blood group type,
removing the effect of blood type population frequencies. Woolf’s sem-
inal study appears to be the first application of an odds ratio in human
genetic association analysis.

The odds ratio (OR) of disease is defined as

OR =
P1

1− P1

/
P2

1− P2
=

P1(1− P2)
P2(1− P1)

, (2.9)

where P1 and P2 are the proportions of individuals exposed to the risk
factor among cases and controls, respectively, and 1 − P1 and 1 − P2
are the proportions not exposed to the risk factor. Often the natural
logarithm of the odds (the log-odds) is used instead because a change
in the labels of the risk factors only changes the sign of the log-odds
(LOD) but changes the value of the OR. For example, let OR = 2 so
that LOD = 0.693. If we relabel the risk factors symmetrically, then
OR = 1/2 but LOD = −0.693. The log-odds (LOD), is defined as

LOD = log
(

P1

1− P1

)
− log

(
P2

1− P2

)
.

A major advantage of using the odds ratio (or log-odds), rather than
comparing disease incidence directly between risk-exposed and -unexposed
groups, is that the odds ratio is independent of the population fre-
quency of the risk factor. To see this, let p be the population frequency
of the risk factor and let z1 and z2 be the conditional probabilities that
an individual is a case given that they are (or are not) exposed to the
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risk factor, respectively. The expected population proportions are,

P1 = z1 p,

1− P1 = z2(1− p),

P2 = (1− z1)p,

1− P2 = (1− z2)(1− p).

Substituting these values into equation 2.9 above, we obtain

OR =
[

z1 p
z2(1− p)

]/[
(1− z1)p

(1− z2)(1− p)

]
,

=
(

z1

z2

)/(
1− z1

1− z2

)
,

=
(

z1

1− z1

)/(
z2

1− z2

)
,

which is simply the ratio of the odds of being a case given an exposure
to the risk factor, z1/(1− z1), versus the odds of being a case given no
exposure, z2/(1− z2). This effectively quantifies the increased risk due
to exposure to the risk factor independent of the population frequency
of the risk factor. Clearly, if the factor does not influence risk this ratio
will be 1, otherwise it will be greater than 1.

2.4.2 Relative risk

The relative risk (RR) is defined as the probability that an individual
exposed to the risk factor develops the disease (e.g., becomes a case)
divided by the probability that an unexposed individual develops the
disease,

RR =
Pr(case|exposed)

Pr(case|unexposed)
=

z1

z2
.

The relationship between the OR and RR is

OR = RR×
(

1− z2

1− z1

)
.

Therefore, OR ≈ RR in the case that a disease is rare, so that risks
for both exposed and unexposed individuals are small (e.g., zi << 1,
i = 1, 2). It is not always possible to estimate the RR directly in case-
control studies. The relevant ratio of population parameters is

RR =
Pr(exposed|case)

Pr(unexposed|case)
× Pr(unexposed)

Pr(exposed)
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=
(

pC
1− pC

)
×
(

1− p
p

)
,

where pC is the frequency of the risk factor among cases and p is the
overall population frequency of the risk factor (usually unknown). In
much of the human genetics literature the terms relative risk and odds
ratio are used interchangeably to refer to what in this book we call the
odds ratio.

2.4.3 Odds ratio estimators

A straightforward estimator of the OR (Woolf, 1955) uses the observed
sample proportions to estimate the population proportions, applying
equation 2.9 above. Table 2.6 presents a contingency table of the out-

Risk Factor

Disease + - Total

+ a b n+
- c d n−

Table 2.6 Contingency table of possible outcomes for a case-control study of
a binary risk factor. Plus and minus signs indicate the presence or absence of

either the risk factor (row) or the disease (column).

comes for a case-control association study of a binary disease trait. The
estimator of Woolf (1955) is

ORW =
a× d
b× c

. (2.10)

For small samples Haldane (1956) suggested the formula,

ORH =
(a + 1/2)(d + 1/2)
(b + 1/2)(c + 1/2)

. (2.11)

Haldane (1956) and Anscombe (1956) showed that log ORH is an ap-
proximately unbiased estimator of log OR. One approach for applying
these formulae to biallelic SNPs is to partition genotypes into binary
classes, for example if we label the alleles 1 and 2 we could consider 11
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versus 12 or 22, and so on (e.g., Thomson, 1981). This quantity is often
referred to as the genotype relative risk.

To illustrate, we apply equation 2.10 to the IBD data of Duerr et al.
(2006) given in table 2.4. Treating genotypes A/A and A/G as having
equivalent risk and G/G as the non-risk genotype gives,

ORW =
21× 468
70× 521

= 0.269.

The log-odds is LODW = −1.31. Applying equation 2.11 to the IBD
data gives,

ORH =
(21 + 1/2)× (468 + 1/2)
(70 + 1/2)× (521 + 1/2)

= 0.274.

The log-odds is LODH = −1.29. In this example, the sample size is
quite large and so the two methods produce very similar results. As
noted previously, the A allele at this locus appears to be protective and
the LOD score is therefore negative. The proportion of IBD cases among
individuals with no copies of the A allele is about 3-fold higher than
among individuals with either one or two copies of A.

2.4.4 Hypothesis tests and confidence intervals

Woolf (1955) developed an approximate method for inferring the stan-
dard deviation of the LOD,

σW =

√
1
a

+
1
b

+
1
c

+
1
d

,

and Haldane (1956) suggested the approximation

σH =
√

1
a + 1

+
1

b + 1
+

1
c + 1

+
1

d + 1
,

which produces smaller values, particularly when one or more cell counts
in the contingency table are low (typically the case for small samples or
low frequency alleles). Using either of these equations to infer σ an ap-
proximate 95% confidence interval for the OR is (see Fleiss, 1979),

OR± 1.96×OR× σ,

and an approximate 95% confidence interval for the LOD is

LOD± 1.96× σ,
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where here OR and LOD indicate estimates of the odds ratio or log-
odds obtained using either of the equations 2.10 or 2.11 above. Al-
though the approximations presented above tend to be quite accurate
for the sample sizes and allele frequencies found in many GWASs, if
needed exact confidence intervals for OR and LOD can be calculated
numerically based on the theory outlined in Cornfield (1956). An ef-
ficient algorithm is described by Thomas (1971). If one is willing to
assume HWE in controls, even more precise estimates of the OR are
possible (Lathrop, 1983).

One test of the hypothesis that an allele has no influence on disease
risk is to examine whether the 95% confidence interval of OR (or LOD)
includes 1 (or 0), if so we accept the null hypothesis of no effect on
disease risk, otherwise we reject the null hypothesis. This is essentially
a test of disease-locus association. To illustrate calculation of OR confi-
dence intervals and hypothesis tests, we analyze the data of Duerr et al.
(2006) considered in the previous section. This gives ORH = 0.274, the
standard error of the log-odds is estimated to be

σH =
√

1
21 + 1

+
1

70 + 1
+

1
521 + 1

+
1

468 + 1
= 0.252,

and the approximate 95% CI of ORH is,

ORH = 0.27± (1.96× 0.274× 0.252)

= 0.27± 0.14.

The approximate 95% CI for LOD is

LOD = −1.29± (1.96× 0.252)

= −1.29± 0.49.

Thus we reject the null hypothesis of no effect on disease risk at the
α = 0.05 level.

Another approach to test the hypothesis that OR = 1 (or LOD = 0)
makes use of the fact that under the null hypothesis the statistic

T =
(log ORH)2

σ2
H

,

follows an asymptotic distribution that is chi-square with 1 degree of
freedom. For the data of Duerr et al. (2006), the test statistic has the
value

T =
(−1.29)2

0.2522 = 26.3,
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which has significance (tail probability) P = 2.9× 10−7 assuming a chi-
square distribution with 1 df.

2.5 Multiple testing corrections

In a locus-by-locus GWAS many tests are performed and corrections for
multiple testing are needed to prevent the number of significant associ-
ations from increasing as a function of the number of loci. However, the
GWAS is not typical of situations in which multiple test corrections are
applied. Most multiple testing corrections assume that a common hy-
pothesis is being tested with each additional experiment. The set of ex-
periments constitute a “family” of hypothesis tests and the family-wise
significance is the probability of a type I error (rejection of a true null
hypothesis) in any test. Thus, if multiple experiments are performed a
rejection of the null hypothesis under any experiment is assumed to be
incompatible with the null hypothesis.

The GWAS does not fit the standard multiple-testing paradigm be-
cause each experiment (locus) tests a different hypothesis (that a par-
ticular locus is associated with disease) and a rejection of the null hy-
pothesis for one experiment (locus) normally does not invalidate the
null hypothesis for other experiments. The usual motivation for con-
trolling type I error rates in GWASs is thus to control the frequency of
false positives, not to fix the global (or family-wise) type I error rate for
the entire array of SNP loci.

In this section, we discuss several widely-used strategies for control-
ling type I error rates in GWASs. However, it is important to recog-
nize that the GWAS hypothesis testing problem is complicated by fac-
tors other than simply the large number of hypothesis tests. The tests
performed at individual loci have a complicated dependence structure,
both because SNP alleles at closely-linked loci can be in linkage dise-
quilibrium (see Chapter 3) or have epistatic interactions (and are there-
fore correlated) and because even when the loci are on different chro-
mosomes and have independent effects the errors associated with the
phenotype measures on individuals are shared across all loci tested for
that individual.

To illustrate the dependence among tests, consider the quantitative
genetic model of traits influenced by loci with additive effects presented
in Section 1.6.2. If Pi is the phenotype measured for individual i and two
genetic loci contribute to the trait, then the phenotype is given by the
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equation

Pi = a1x1(i) + a2x2(i) + εi.

If locus-by-locus significance tests are carried out using genotypes xj ∈
(0, 1, 2), we ignore the fact that the same error distribution (terms εi)
applies for all loci. We also ignore potential non-causal relationships be-
tween loci due, for example, to linkage disequilibrium (LD) between lo-
cus 1 and 2, with locus 2 having a causal influence on disease risk (e.g.,
a2 > 0) but locus 1 only appearing to have a causal influence (e.g., a1 =
0) through its correlation with locus 2 via LD. We have already con-
sidered multiple regression methods that can accommodate covariance
among loci in their effects on a continuous phenotype. In Chapter 3 we
consider methods that attempt to deal with these non-independence
issues by simultaneously analyzing multiple SNP loci and explicitly
incorporating such factors as linkage disequilibrium. Here, although
we make corrections to deal with the multiplicity of tests, the results
should be interpreted with caution.

2.5.1 Bonferroni correction

Suppose that m hypothesis tests are performed and the probability of a
false positive (type I error) for any given test is α. In a GWAS the num-
ber of tests, m, equals the number of loci L multiplied by the number of
traits measured, t, so that m = L× t. For example, in a case-control as-
sociation study there is a single binary trait (case/control) and m = L.
If the tests are independent and the null hypothesis H0 is true then the
family-wise probability of at least one rejection is

Pr(at least on rejection|H0) = 1− (1− α)m.

For a fixed significance level α, this probability increases monotonically
towards 1 with increasing m. The Bonferroni correction controls the
family-wise rejection rate by instead using a test-wise rejection thresh-
old for p-values that depends on the number of tests performed. The
null hypothesis is rejected for test i if

Pi <
α

m

With this correction the probability of at least one rejection is

Pr(at least on rejection|H0) = 1− (1− α/m)m
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= α− 3α2

m
+ · · ·

< α. (2.12)

As the number of tests increases the global rejection probability con-
verges to,

lim
m→∞

1−
(

1− α

m

)m
= 1− e−α = α +

α2

2!
− α3

3!
+ · · ·

Thus, the global significance is never greater than α and (for small α)
it approaches the nominal level α with increasing numbers of loci. If
tests are dependent, the Bonferroni correction will become increasingly
conservative (e.g., the actual type I error will be much smaller than α).
For example, if the tests performed at m loci are completely dependent
then either all tests reject (with probability α/m) or all tests accept (with
probability 1− α/m) and so the actual type I error rate is α/m.

As an example, consider the p-values for association at 4 loci (ex-
periments) presented in table 2.7. If the family-wise significance level
is taken to be 10−3, then the significance threshold for evaluating each
p-value under a Bonferroni correction is 10−3/4 = 2.5 × 10−4. Thus,
without a Bonferroni correction, both locus 1 and 3 would show a sig-
nificant association, whereas with the correction only the association at
locus 3 is considered significant.

Locus p-value Bonferroni False Discovery

1 5× 10−4 NS NS
2 1× 10−2 NS NS
3 2× 10−4 S S
4 0.21 NS NS

Table 2.7 Results obtained by applying Bonferroni and FDR corrections for
multiple testing to analyze the significance of p-values obtained from 4 loci
(experiments). The family-wise significance level was α = 10−3 in all cases.

To further illustrate the outcome of a Bonferroni correction, we con-
sider the GWAS of metabolic traits by Sabatti et al. (2009) who per-
formed tests of association between N = 329, 091 SNP loci and 9 metabolic
traits including levels of triglycerides, lipoprotein, glucose, C-reactive
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protein, and so on, for a sample of individuals from Finland. The test-
wise p-value rejection threshold, α∗, for this study, assuming a family-
wise type I error rate of α = 0.05, and only correcting for the number of
loci (using a Bonferroni correction) is

α∗ =
0.05

329091
= 1.5× 10−7.

Correcting for both the number of loci and the number of traits tested
gives,

α∗ =
0.05

329091× 9
= 1.7× 10−8.

For loci with small effects or low frequencies a very large sample of
cases and controls is needed to achieve this level of significance.

2.5.2 False discovery rate correction

A different approach to controlling significance in multiple testing prob-
lems is to control the “false discovery rate” (FDR). Under this paradigm,
rejecting a null hypothesis is a “statistical discovery” and rejecting a
true null hypothesis is a “false discovery.” The FDR is defined as the ex-
pected proportion of hypothesis rejections that are incorrect (e.g., those
that reject a true null hypothesis and are therefore false discoveries).
Table 2.8 shows the possible outcomes for m hypothesis tests, where m

Accepted H0 Rejected H0 Total

True H0 U V m0
False H0 T S m−m0

Total m− R R m

Table 2.8 Variables summarizing counts of possible outcomes for m
experiments that each test a null hypothesis H0.

is fixed by the experiment and the outcomes are random variables. The
proportion of erroneously rejected null hypotheses is

Q =
V

V + S
,
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and the false discovery rate (FDR) is defined to be the expected value
of this ratio of random variables,

FDR = E(Q) = E

[
V

V + S

]
,

where the variables V and S are as defined in table 2.8.
Suppose that a total of m independent tests are performed and that

m0 of the data sets to which the tests are applied were generated un-
der the null hypothesis (e.g., the null hypothesis is true for m0 of the
tests). The Benjamini-Hochberg method for adjusting p-values in mul-
tiple tests guarantees that,

FDR ≤ m0

m
α ≤ α,

There are 4 steps in the algorithm: (1) Rank order the p-values from
each experiment so that

P(1) < P(2) < · · · < P(m).

(2) Calculate a vector of values for the function li and find the position
of the largest p-value P(i) that is less than li,

li =
iα
m

, R = max{i : P(i) < li}.

(3) Set the test-wise p-value rejection threshold to be α∗ = P(R). (4)
Reject all H0(i) for which Pi ≤ T.

As an example, we again consider the p-values for association at 4
loci (experiments) presented in table 2.7. If the family-wise significance
level is taken to be 10−3, then the rank-ordered p-values and values of
function l are

P(1) = 2× 10−4,

P(2) = 5× 10−4,

P(3) = 1× 10−2,

P(4) = 0.21,

and

l1 =
1× 10−3

4
= 2.5× 10−4,

l2 =
2× 10−3

4
= 5× 10−4,
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l3 =
3× 10−3

4
= 7.5× 10−4,

l4 =
4× 10−3

4
= 10−3.

Note that P(1) < l1 but P(i) ≥ ii for all i > 1 and therefore α∗ = P(1) =
2× 10−4 and only the association for locus 3 is considered significant.

Sabatti et al. (2009) used a false discovery rate of 0.05 in their GWAS
of 9 metabolic traits described above. There were N = 329, 091 SNP
loci in that study and the test-wise p-value rejection threshold, obtained
by applying the Benjamini-Hochberg algorithm, was determined to be
α∗ = 1.2× 10−6. Because the tests are not independent, Sabatti et al.
(2009) chose to use the more conservative threshold of 1.5× 10−7 for
determining genome-wide significance of associations between SNPs
and the 9 metabolic traits in their study.

2.5.3 Tail strength

Let m experiments be performed and a statistical hypothesis test ap-
plied to the data from each experiment. Taylor and Tibshirani (2006)
proposed a test of whether the null hypothesis is true for all the exper-
iments. Under this hypothesis, the m p-values, pi for i = 1, 2, . . . , m are
independent and identically distributed (i.i.d) uniform random vari-
ables on the interval [0, 1]. If the null hypothesis is false for some of the
experiments there will be an excess of small p-values. To capture this
effect, they proposed a “tail-strength” statistic that is a function of the
p-values,

TS(p1, . . . , pm) =
1
m

m

∑
k=1

(
1− p(k)

m + 1
k

)
, (2.13)

where

p(1) ≤ p(2) ≤ · · · ≤ p(m),

are the rank-ordered p-values (referred to as the order statistics). This
statistic takes positive values when p-values are small and negative val-
ues when they are large. Because the distribution of the p-values is uni-
form, the order statistics divide the interval into segments of equal size
so that the expectation (mean) of the kth rank-ordered p-value under
the null hypothesis is

E[p(k)] =
k

m + 1
,
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and the expected value of the tail-strength statistic is zero, E[TS] = 0.
Furthermore, the asymptotic distribution of TS as m → ∞ is a normal
distribution with mean 0 and variance,

σ2
TS =

1
m

, (2.14)

if the experiments are independent. Thus, under the null hypothesis the
test statistic has 95% CI,

TS± 1.96×m−1/2,

If this interval excludes zero then the null hypothesis is rejected. If the
experiments are not independent, equation 2.14 tends to underestimate
the variance (and thus rejects too often). Taylor and Tibshirani (2006)
proposed that a permutation procedure instead be applied to the origi-
nal data to estimate σ(TS). Permutation procedures are discussed in the
next section.

2.5.4 Permutation methods

A permutation test provides a non-parametric method for evaluating
the hypothesis that two or more samples are from the same probability
distribution (see Wasserman, 2004). Permutation is most useful in cases
where sample sizes are small (and asymptotic theory therefore invalid)
because it provides an exact test. Here we will be interested mainly in
permutation procedures for obtaining family-wise significance values
when multiple tests are performed. However, the method can also be
used for estimating the significance of a single hypothesis test.

We first give a generic description of the permutation procedure for
comparing two samples, then we consider the specific case of a test
for genetic association. Let x1, . . . , xk and y1, . . . , yn be two independent
samples of size k and n. Let F1(x1, . . . , xk) and F2(y1, . . . , yn) denote the
cumulative distribution functions (CDFs) for each sample. Under the
null hypothesis the samples have the same CDF so that H0 : F1 = F2
while under the alternative hypothesis their CDFs are different so that
H1 : F1 6= F2. Let T(x1, . . . , xk, y1, . . . , yn) be a test statistic and let Tobs be
its value calculated for the observed data. The permutation procedure
is carried out as follows:

1. label each data point with an index from 1 to n + k.
2. enumerate all (n + k)! permutations of the indexes.
3. order data points according to index for each permutation
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4. for each permutation calculate T∗i where i = 1, 2, . . . , (n + k)!.

Under the null hypothesis, all sample permutations have the same joint
probability distribution and each test statistic value calculated for the
permuted data is equally likely. Thus the distribution of T∗ for the per-
muted data provides the sampling distribution of the test statistic un-
der the null hypothesis. The p-value for the observed data is calculated
as

p− value = Pr(T∗ > Tobs) =
1

(n + k)!

(n+k)!

∑
i=1

I(T∗i > Tobs),

where I(·) is an indicator function that takes the value 1 if its argument
is true and 0 otherwise.

Permutation test of allelic association
We now consider a case-control study of association for a biallelic SNP
locus with three genotype classes g0, g1 and g2. Our test statistic com-
pares genotype frequencies in cases versus controls. The expected fre-
quency of genotype gi among cases is

f (gi|case) =
f (case|gi) f (gi)

f (case)
= f (case|gi)×

f (gi)
f (case)

.

We now apply permutation to the binary case-control variable; this
does not influence the marginal distributions f (case) or f (gi) but alters
the conditional distribution so that f (case|gi) ≈ f (case) and f (gi|case) ≈
f (gi) for the permuted datasets. Calculating an association test statis-
tic, T, from each of these permuted datasets will produce the null dis-
tribution for T against which the observed value can be compared to
determine significance.

To illustrate the permutation procedure in the case of a single locus,
consider the IBD data of Duerr et al. (2006) shown in table 2.4 We will
use permutation to generate the sampling distribution of the genotype
association likelihood ratio test statistic given by equation 2.7 Permut-
ing case-control status among individuals in each genotype class, the
probability of any particular partition with x, y and z cases in the g0, g1
and g2 genotype classes, respectively, is

Pr(x, y, x) =
(

n0

x

)(
n1

y

)(
n2

z

)(
1
2

)x+y+z
,

where n0, n1 and n2 are the total counts of cases and controls in each
genotype class. It is efficient to sample directly from this distribution
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Frequency Distribution of LRT Across Permutations
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Figure 2.1 Frequency distribution of simulated likelihood ratio test
(LRT) values for genotype association under null hypothesis obtained
by permutation of case-control status.

to obtain permuted datasets, rather than permuting indexes of indi-
viduals, as described above. The two procedures are equivalent. Sim-
ulating samples from this distribution, calculating the LRT test statis-
tic, and rank ordering the results we can predict the probability of a
value at least as large as the observed value under the null hypoth-
esis. The distribution of LRT values for 100,000 randomly permuted
datasets is shown in Figure 2.1 The observed value of −2 log λ = 34.84
is greater than any of the values observed in the simulation and there-
fore has a p-value no larger than 10−5. The p-value calculated based on
the asymptotic chi-square distribution is 2.73× 10−8 suggesting that as
many as 109 random permutations may be needed to accurately infer
the p-value in this example.

Churchill and Doerge (1994) proposed the use of permutation to de-
termine significance for quantitative trait loci mapped via breeding crosses
in which many markers were studied and many tests carried out. Anal-
ogous procedures can be applied for determining significance in GWASs
(e.g., Purcell et al., 2007). Churchill and Doerge (1994) permute the trait
value across individuals in one of two ways: (1) comparisonwise: car-
rying out a separate permutation analysis across individuals for each
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locus; (2) experimentwise: carrying out a combined permutation anal-
ysis across individuals for all loci.

To determine the comparisonwise threshold, generate N permuta-
tions of the data by permuting phenotypes (e.g., trait measures or case-
control status) across individuals. This could be done either by label-
ing each individual with an index (as described above) and permuting
indexes across phenotypes, or by marginally permuting phenotypes
across individuals at each locus. The second approach is preferable
from a statistical perspective as otherwise the same permutations are
shared across all loci, creating potential correlations in test results. How-
ever, computationally the first procedure is much more efficient (Churchill
and Doerge, 1994) because it requires only N permutations versus N ×
L permutations in the second procedure. In either case, the threshold
for significance at each locus is estimated by finding the 100(1− α) per-
centile of the distribution of test statistic values calculated for the N
permuted datasets. For any given locus, this is the same procedure as
was presented in the previous example.

To determine the experimentwise threshold for significance (equiv-
alent to what we earlier called the family-wise threshold) we generate
N datasets by permuting individual indexes across phenotypes. A test
statistic is calculated for each locus for the ith permuted dataset and
we find the largest test statistic max Ti across loci. The distribution of
max T is used to determine the experimentwise threshold by taking the
100(1− α) percentile of the distribution of max T across permutations.
The experimentwise critical value is used to detect an association at one
or more loci in the genome, controlling the type I error rate.

2.6 Graphical representation of GWAS results

Many computer software packages are available for visualizing the re-
sults of a GWAS (e.g., Chen et al., 2008; Martin et al., 2009). Most allow
the results of multiple studies (or high-dimensional phenotypes) to be
displayed simultaneously. One of the simplest procedures for visualing
locus-wise significance scores is the Manhattan plot. A Manhattan plot
is a scatterplot that arrays the SNP loci according to physical position
along the x-axis and plots the height of the absolute value of log10 p,
where p the probability score (obtained using one of the association
methods described earlier) for a SNP on the y-axis. Increasing height
on the y-axis indicates increasing significance. Figure 2.2 shows a Man-
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hattan plot generated using the software package AssociationViewer
(Martin et al., 2009). The figure is based on an analysis of an exam-
ple data file included with the program. A quantile-quantile plot (see

Figure 2.2 Manhattan plot of data from a GWAS. Each square repre-
sents a chromosome and SNPs are ordered across the chromosome
according to physical position. The points are log-probability scores
with increased height indicating an increased significance level.

Rice, 1995) can also be useful for identifying unusual distributions of
p-values that might be due to population substructure, SNPs of un-
usually large effect, etc (Clayton et al., 2005). The use of Q-Q plots for
identifying cryptic population substructure will be further discussed in
Chapter 5.


