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Abstract.—Methods for Bayesian inference of phylogeny using DNA sequences based on Markov
chain Monte Carlo (MCMC) techniques allow the incorporation of arbitrarily complex models of
the DNA substitution process, and other aspects of evolution. This has increased the realism of
models, potentially improving the accuracy of the methods, and is largely responsible for their
recent popularity. Another consequence of the increased complexity of models in Bayesian phy-
logenetics is that these models have, in several cases, become overparameterized. In such cases,
some parameters of the model are not identi�able; different combinations of nonidenti�able pa-
rameters lead to the same likelihood, making it impossible to decide among the potential param-
eter values based on the data. Overparameterized models can also slow the rate of convergence
of MCMC algorithms due to large negative correlations among parameters in the posterior prob-
ability distribution. Functions of parameters can sometimes be found, in overparameterized mod-
els, that are identi�able, and inferences based on these functions are legitimate. Examples are pre-
sented of overparameterized models that have been proposed in the context of several Bayesian
methods for inferring the relative ages of nodes in a phylogeny when the substitution rate evolves
over time. [Bayesian phylogenetic inference; Markov chain Monte Carlo; overparameterization ;
parameter identi�ability.]

An important factor that has delayed the
adoption of Bayesian methods in biology
and other �elds is the mathematical dif�-
culty of many Bayesian calculations. The re-
cent increase in popularity of Bayesian statis-
tical methods in genetics (Shoemaker et al.,
1999) and other areas of biology is largely
due to advances in computing power that
have allowed numerical techniques such as
Monte Carlo simulation to be implemented
to perform Bayesian analysis using complex
models. In the past, Bayesian inference was
largely limited to simple models for which
analytical results were available; the choice
of a model was too often based on mathemat-
ical convenience, and biologists have been
justi�ed in their scepticism of such methods.
With the adventof new numerical techniques
for evaluating Bayesian equations, power-
ful computers to carry out the calculations,
and �exible programming languages, model
choice in Bayesian analysis has become less
arbitrary, and Bayesian techniques for sta-
tistical inference are becoming increasingly
accepted among biologists.

The development of numerical techniques
for generating posterior distributions for
models of arbitrary complexity, beginning
in the 1950s, presented the prospect that
Bayesian analysis could be carried out for
scienti�c problems in which prior distribu-
tions and likelihoods were chosen as best

suited to the problem at hand. The most
popular approaches, Markov chain Monte
Carlo (MCMC) methods, have used the
Metropolis–Hastings algorithm (Metropolis
et al., 1953; Hastings, 1970) and its many vari-
ants (reviewed by Gilks et al., 1996). The basic
principle underlying MCMC methods is that
a Markov chain can be constructed with a sta-
tionary distribution that is the joint posterior
probability distribution of the parameters of
the model. The parameters are assigned arbi-
trary initial values, and the chain is simulated
until it appears to converge to the stationary
distribution. Observations from the chain at
stationarity are used to estimate the joint pos-
terior probabilities of the parameters.

The posterior probability distribution of
parameters, obtained by applying the Bayes
theorem, forms the foundation for Bayesian
inference. Let X 2 Ä be a vector of observed
random variables (the data) taking values on
a state space Ä, which de�nes the set of pos-
sible data con�gurations, and let µ 2 2 be a
vector of one or more parameters that com-
pletely specify the form of the probability dis-
tribution of X on Ä. The posterior probabil-
ity distribution of the parameters µ , given X,
is

f (µ j X) D
f (X j µ)g(µ)R

µ22
f (X j µ)g(µ ) dµ

, (1)
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where g(µ ) is the prior probability distribu-
tion of µ (i.e., the probability distribution be-
fore examination of the data) and f (X j µ ) is
the probability of the data given the parame-
ters (the likelihood). Point estimates and con-
�dence intervals for µ can be obtained from
the posterior distribution in various ways.
The mode, or mean, of the posterior distri-
bution is often used as a point estimate of
µ , and the ® percent credible set is used as
a con�dence interval, containing the “true”
parameter value with probability ®.

An attractive feature of MCMC methods
is that each iteration of the Markov chain re-
quires only that ratios of the likelihood func-
tion (and possibly the priors) be calculated,
eliminating the need to evaluate the denom-
inator of Equation 1, which is often a higher
dimensional integral, or sum, for complex
models. Moreover, marginal distributions of
parameters are easily obtained by monitor-
ing the values of particular parameters in
the chain at stationarity, again avoiding the
need to evaluate integrals or sums. The ease
with which the number of parameters may be
expanded in a Bayesian model (with no ap-
parent cost) carries some risk. It is possible to
overparameterize a model such that it is not
identi�able, meaning that the model leads
to sample con�guration probabilities identi-
cal to those of a simpler model with fewer
parameters. Overparameterization will in-
crease the importance of the prior; even with
an in�nite amount of data, the prior will con-
tinue to in�uence the posterior distribution.
Overparameterization may also lead to im-
proper posterior distributions (i.e., the poste-
rior distribution does not satisfy the laws of
probability) in cases where an improper prior
is used and possibly to poor convergence of
the MCMC algorithm (see Carlin and Louis,
1996).

Several authors have recently proposed
MCMC methods for Bayesian phylogenetic
inference (Yang and Rannala, 1997; Mau
et al., 1999). Problems of identi�ability and
overparameterization can arise in the con-
text of MCMC Bayesian phylogenetic analy-
sis and are the focus here. To set the context,
I provide a brief overview of standard the-
ory relating to identi�ability of parameters.
A more extensive discussion of these con-
cepts was presented by Casella and Berger
(1990). I then present a simple model that
is not identi�able to study the effect of non-
identi�ability on the posterior density of pa-

rameters and the rate of convergence of a
MCMC algorithm in this case. To illustrate
the potential for identi�ability problems in
Bayesian MCMC phylogenetic inference, I
discuss recent approaches that are aimed at
modeling molecular evolution when the rate
of nucleotide substitution varies over time
(Thorne et al., 1998; Huelsenbeck et al., 2000;
Kishino et al., 2001).

The examples presented, i.e., the vari-
able clock models of Thorne et al. (1998),
Huelsenbeck et al. (2000), and Kishino et al.
(2001), were chosen merely to illustrate
how the complex models used in Bayesian
phylogenetic inference can become over-
parameterized. There is no indication that
overparameterization causes any problems
for phylogenetic inference in the cases pre-
sented, and my observation that the mod-
els are overparameterized should not be per-
ceived as a criticism. Overparameterization
is a property of the likelihood, and so sim-
ilar problems may arise in maximum like-
lihood analysis. Nonidenti�able parameters
are more likely to be recognized in a like-
lihood analysis, however, because they will
result in multiple maxima for the likelihood
of the nonidenti�able parameters and will
therefore present problems for maximiza-
tion algorithms. One solution for an over-
parameterized model (under either a like-
lihood or a Bayesian approach) is to �nd a
function of the parameters that is identi�-
able and to estimate the value of this function
instead. A potential advantage of Bayesian
analysis over likelihood is that if an informa-
tive prior is available proper inferences can
be obtained despite the fact that a model is
overparameterized.

IDENTIFIABILITY OF PARAMETERS

Here, I de�ne the concept of identi�abil-
ity and give an example of a model with pa-
rameters that are not identi�able. Following
earlier notation, let X be a vector of observed
random variables, where X 2 Ä. De�ne f to
be a probability distribution function for a
model completely speci�ed by parameters µ .
If there exists some µ1 6D µ2 satisfying

f (X j µ1) D f (X j µ2),

for all X 2 Ä, then the parameters of the
model are not identi�able, i.e., all pos-
sible sets of observations have identical
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probabilities for two different sets of param-
eters. Identi�ability is a problem of model
speci�cation rather than one of inference,
but inference problems can arise because
of misspeci�ed models. From a Bayesian
perspective, nonidenti�ability of parameters
may also be manifest as a strong correlation
among parameters in the posterior density,
despite the fact that the parameters are inde-
pendent under the prior density.

If an informative prior is used for one
or more of the nonidenti�able parameters,
legitimate Bayesian inference may still be
possible. For example, if µ1 D f®(1)

1 , ®
(2)
1 g and

µ2 D f®(1)
2 , ®

(2)
2 g and the likelihood is a func-

tion of ®(1) C ®(2) only, then the ® param-
eters are not separately identi�able. How-
ever, if the prior for ®(2) speci�es that ®(2) D x
with probability 1, then µ1 D µ2 if and only if
®

(1)
1 D ®

(1)
2 , and the model becomes identi�-

able. If an informative prior is available, then
Bayesian inference is possible, even in cases
where the model is not identi�able (from the
perspective of the likelihood).

NONIDENTIFIABILITY: A S IMPLE EXAMPLE

In the following example, there are two
simple models, one that is overparameter-
ized and another that is not. The intention
is to illustrate the concept of nonidenti�abil-
ity in a simple yet concrete example and to
study the effect on the posterior density of
the parameters and the convergence of an
MCMC algorithm. Let X D fX j g, where the
X j are independent identically distributed
(i.i.d.) random variables, each exponentially
distributed with parameter ¸. To simplify
notation:

1 D
nX

jD1

X j :

The probability density of the data given ¸
(the likelihood of ¸) is

f1(X j ¸) D ¸ne¡¸1:

In model 1, let the prior density of the param-
eter ¸ be a gamma density with parameters
k and ¯:

g1(¸ j ¯, k) D
¯k¸k¡1e¡¸¯

0(k)
:

The marginal probability of the data is

f1(X j ¯, k) D
Z 1

0

¯ k¸nCk¡1

0(k)
e¡¸(1C¯) d¸

D
0(n C k)¯k

0(k)(1 C ¯)nCk ,

and the posterior density of ¸ given X is

f1(¸ j X, ¯, k) D
(1 C ¯)n¡k ¸nCk¡1e¡¸(1C¯)

0(n C k)
,

which is a gamma density with parameters
n C k and 1 C ¯.

In model 2, the prior density of the rate
parameter for the n exponential random vari-
ables is determined by a sum, 3 D ¸1 C ¸2 C
¢ ¢ ¢ C ¸k , of k i.i.d. exponential random vari-
ables with parameter ¯. The k ¡ 1 additional
parameters in this model are not identi�able
because an uncountably in�nite number of
combinations of ¸1, ¸2, : : : , ¸k will result in
the same value of 3 and thus the same prob-
ability density of the data (likelihood). The
probability of the data X, given 3, is

f2(X j 3) D 3ne¡31,

and the prior probability of ¸i is

g2(¸i j ¯) D ¯e¡¯¸i :

The marginal probability of the data is

f2(X j ¯, k)

D
Z 1

0
¢ ¢ ¢

Z 1

0

³
kX

iD1

¸i

ń

¯ k

£ exp

"
¡

kX

iD1

¸i (1 C ¯)

#
d¸1 ¢ ¢ ¢ d¸k

D
0(n C k)¯k

0(k)(1 C ¯)nCk ,

which is identical to the marginal probability
of the data under model 1. The sum of k i.i.d.
exponential random variables with parame-
ter ¯ is distributed as a gamma (k, ¯) den-
sity, and this is the prior chosen for model 1.
The joint posterior density of the parameters
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under model 2 is

f2(¸1, ¸2, : : : , ¸k j X, ¯, k)

D
0(k)

0(n C k)
3n (1 C ¯)nCk e¡3(1C¯):

The two models can be used to study the
effect of overparameterization on the poste-
rior probability density of 3 and the rate of
convergence of MCMC. Model 2 has k ¡ 1
additional parameters by comparison with
model 1, and only the sum of the parameters
is identi�able. The effect of arbitrary degrees
of overparameterization can be studied for
model 2 by simply modifying k.

In the simple case that there is one ad-
ditional parameter under the second model
(k D 2), the expected correlation, ½12, of the
parameters ¸1 and ¸2 in the posterior density
is

½12 D ¡
n

n C 6
:

The parameters are negatively correlated in
the posterior density, and this correlation
increases with increasing sample size, ulti-
mately tending to ¡1. This result is intuitive
because with few observations there is
little information available about the param-
eters; the prior, which models ¸1 and ¸2 as
i.i.d., then dominates. With increased data,
the likelihood dominates and the nonidenti-
�ability is manifest as a strong negative cor-
relation between the variables. For complex
models, it may be impossible to recognize
overparameterized models a priori by ana-
lytical analysis. An alternative approach to
detect overparameterization might be to em-
pirically estimate the correlation among pa-
rameters by jointly sampling parameter val-
ues from the chain in an MCMC analysis and
calculating a correlation coef�cent based on
these samples. Although a very high degree
of correlation among parameters in the pos-
terior density (especially when they are in-
dependent under the prior) may provide a
useful indicator of overparameterization, a
low degree of correlation will be less infor-
mative because it could also occur simply
because of uninformative data and conse-
quentially a dominance of the posterior by
the prior. Often, parameters are correlated
in the posterior distribution, although still
identi�able, and this criterion should be used
only as a rough guide for detecting poten-

tial cases of overparameterization and will be
most useful when very large sample sizes are
available.

OVERPARAMETERIZATION AND MCMC
CONVERGENCE

Overparameterization may retard conver-
gence in MCMC because of the resulting
strong negative correlations among param-
eters in the posterior probability density. The
effect of overparameterization on the rate of
convergence of MCMC can be studied us-
ing the two models developed above. For
model 1, the log-likelihood to be evaluated
in the MCMC algorithm is

log L1(¸) D n log(¸) ¡ ¸1:

For model 2, the log-likelihood to be evalu-
ated in the MCMC algorithm is

log L2(3) D n log (3) ¡ 31:

At each iteration of the chain, new values
are proposed for either ¸ (model 1) or suc-
cessively ¸1, ¸2, : : : , ¸k (model 2). For both
models, potential parameter values are pro-
posed by adding a uniform random variable,
±, chosen on an appropriate interval (¡D, D),
to the current value of the parameter (re�ect-
ing negative parameter values back onto the
positive axis). Under model 1, a proposed
change will then be ¸0 D ¸ C ±, and under
model 2 (at step i) a proposed change will be
¸0

i D ¸i C ±. But the proposed change under
model 2 is equivalent to 30 D ¸1 C ¢ ¢ ¢ C ¸i C
± C ¢ ¢ ¢ C ¸k D 3 C ±: Ignoring the fact that
the proposed values may need to be re�ected
back more often under model 2, the two
MCMC algorithms are essentially identical
regardless of the number of additional pa-
rameters in model 2, and the rate of conver-
gence is not affected by overparameteriza-
tion in this example (MCMC programs were
also written to generate the posterior density
under the two models, and no difference in
the rate of convergence was observed).

MODELS OF A VARIABLE MOLECULAR
CLOCK

Parametric maximum likelihood and
Bayesian methods of phylogenetic inference
typically model the process of DNA substi-
tution as a continuous-time Markov process.
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If the rate of substitution is a constant, ¹,
substitutions occur at the mth nucleotide
site in the lineage separating descendent
species i from its ancestor, according to
a homogeneous Poisson process. If vi is
the time separating the ancestral and de-
scendent species, the expected number of
substitutions is ¹vi . Gillespie (1984) and
others have considered a process in which
the rate of DNA substitution may change
over time. De�ne the rate of substitution in
lineage i at time t to be ¹i (t). Substitutions
now occur according to a nonhomogenous
Poisson process, and the expected number
of substitutions is

Z vi

0
¹i(t) dt: (2)

In both the constant and variable rate sub-
stitution models, the total number of sub-
stitutions at a site in a descendent will fol-
low a Poisson distribution. The parameter of
the probability distribution is either ¹vi (con-
stant rate model) or the result obtained by
evaluating the integral in Equation 2.

The form of the distribution of substi-
tutions is Poisson under either a constant
or variable substitution model, and the
models can therefore not be distinguished
because one can always choose a constant
rate model (with rate ¹0) that will give an
identical probability distribution to the vari-
able rate model if ¹0 is chosen to satisfy
Equation 2. Among-lineage and among-site
rate variation can be identi�ed. Among-
lineage rate variation would be implied by
the observation that ¹i vi 6D ¹ j v j when vi D
v j , suggesting that ¹i 6D ¹ j (de�ne ¹i as the
rate of substitution in the i th lineage, etc).
This is the basis for a test of the molecu-
lar clock. Among-site rate variation would
be implied by the observation ¹ilvi 6D ¹imvi ,
where ¹il is the rate of substitution at site l
in lineage i , etc.

Several authors have recently proposed
methods for carrying out phylogenetic in-
ference that allow the rate of substitution to
evolve over time (Sanderson, 1997; Thorne
et al., 1998; Huelsenbeck et al., 2000; Kishino
et al., 2001). In these models, the rate of evo-
lution of the substitution rate determines the
amount of information available for infer-
ring the ages of nodes in the tree. With a
rapidly evolving substitution rate, little in-
formation is preserved about node ages, and

there are few constraints among branches in
terms of their average substitution rates. If
rates evolve very slowly the constraints of
rates among branches are closer to those as-
sumed under a strict molecular clock. These
methods are very appealing because they
can allow information to be extracted about
node ages even though rates are not per-
fectly constant. Here, two Bayesian meth-
ods are studied that have recently been pro-
posed (Huelsenbeck et al., 2000; Kishino
et al., 2001) for inferring the relative ages of
nodes in the presence of an evolving substi-
tution rate. These methods, which both use
MCMC methods to estimate node ages, pro-
vide instructive examples of overparameter-
ized models.

The only parameters that are identi�able
in evolving rate models are the average rates
of substitution on branches. An evolving rate
of substitution potentially generates a greater
correlation between the mean substitution
rates on branches that are closer to one an-
other on a phylogeny. Kishino et al. (2001)
considered a very simple model in which the
average substitution rate on a branch is the
average of the rates at the ancestral and de-
scendent nodes. The logarithm of the substi-
tution rate of a descendent node is normally
distributed with a mean chosen such that the
expectation of the substitution rate in the de-
scendent is equal to the rate of its ancestor
(i.e., the process of rate evolution is unbi-
ased). The variance of the (normal) distribu-
tion of the substitution rate in descendents
determines the rate of evolution of the substi-
tution rate; greater variance results in greater
changes in rates across the phylogeny and
less correlation in substitution rates among
branches. Because there are 2s ¡ 1 ancestral
nodes that are assigned rates in this model
but only 2s ¡ 2 identi�able substitution rate
parameters (e.g., the mean substitution rate
for each of the 2s ¡ 2 branches), the model
is overparameterized. This problem was rec-
ognized by Kishino et al. and was dealt with
by constraining one branch to have a descen-
dent rate equal to the ancestral rate, reducing
the number of rates at nodes to 2s ¡ 2.

A more complex model of rate variation
was used by Huelsenbeck et al. (2000), who
considered a model in which substitution
rates change at discrete times over a phy-
logeny. For a given tree, they de�ned »
as the number of rate change events, z D
fz1, z2, : : : , z» g as the positions of rate change
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events on the tree, and r D fr1, r2, : : : , r» g
as a set of rate multipliers. At the i th rate
change event, the current rate is multiplied
by ri to obtain a new rate. Various priors are
imposed for » , z, and r, but in this case no
additional information is available for con-
structing the prior densities on the rate pa-
rameters (it seems unlikely that any such in-
formation will be available in future either),
so the likelihood is the relevant term in as-
sessing whether parameters are identi�able.
For simplicity, I focus on a single branch of
the phylogeny (of length T), letting » be the
number of rate changes on the branch, z the
points in time at which rate changes occur on
the branch, etc. Let ¹0 be the substitution rate
in the immediate ancestor of this lineage. The
substitution rate on interval (zi , ziC1) is

¹0

iY

jD0

r j ,

and the mean rate on the branch is

M(r, z) D ¹0

»X

iD0

"
(ziC1 ¡ zi )

iY

jD0

r j

#
,

where r0 D 1, z0 D 0, and z»C1 D T . The pa-
rameters r and z are not identi�able. Assume
that » D 2, then

M(r, z) D ¹0 [(T ¡ z2)r2r1 C (z2 ¡ z1)r1 C z1] :

To prove nonidenti�ability of these parame-
ters, we need only show that some r0 6D r and
z0 6D z exist satisfying

M(r0, z0) D M(r, z):

The average substitution rate M on a branch
is the only factor in�uencing the likelihood;
parameter changes that do not alter M do not
alter the likelihood. If

r 0
2 D r2 C

±

(T ¡ z2)r1

and

z0
1 D z1 ¡

±

1 ¡ r1

for any ± satisfying r 0
2 > 0 and z2 > z0

1 > 0, a
new combination z0 and r0 results that cor-
responds to the same value of M. An un-

countably in�nite set of parameter values ex-
ist that yield the same value of the likelihood.
If inference is focused on the posterior den-
sity of M, the mean substitution rate for each
branch, rather than z or r, the fact that the
model is overparameterized in this case need
not be a concern unless overparameteriza-
tion leads to convergence problems. In mak-
ing inferences about z or r, however, only a
speci�c function of these parameters, M, is
in�uenced by the data.

DISCUSSION

The ease with which complex models can
be incorporated into a phylogenetic analy-
sis using Bayesian MCMC methods can lead
to overparameterization. Parameters that are
nonidenti�able are in�uenced by the data
only through certain functions of the pa-
rameters that are identi�able; certain aspects
of their posterior distributions are therefore
insensitive to the data and can unduly in-
crease the in�uence of the prior. In such
cases, the posterior density will be nontrivial,
even with an in�nite amount of data, because
the prior continues to in�uence the posterior
density.

In simple cases, identi�able functions of
the parameters of an overparameterized
model can be determined and can be effec-
tively studied by MCMC through use of an
overparameterized model. Overly complex
models with many nonidenti�able parame-
ters may lead to large correlations among pa-
rameters in the posterior density, possibly re-
tarding convergence of an MCMC algorithm,
although this is not always the case as was
found for the simple example presented here.
Determining the robustness of the posterior
density to the prior can be helpful in iden-
tifying overparameterized models. In such
cases, the posterior density will remain sen-
sitive to the form of the prior, despite an
increase in the amount of data. Careful anal-
ysis and monitoring of correlations among
parameters in theposterior density when car-
rying out MCMC can also provide a tool
for identifying inference problems arising be-
cause of overparameterization, although cor-
relations among parameters in the posterior
distribution also commonly occur in mod-
els that are not overparameterized. If sim-
pler models are available, model �tting may
help by reducing the need for overly complex
models.
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