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Abstract.—Numerous simulation studies have investigated the accuracy of phylogenetic inference of gene trees under max-
imum parsimony, maximum likelihood, and Bayesian techniques. The relative accuracy of species tree inference methods
under simulation has received less study. The number of analytical techniques available for inferring species trees is in-
creasing rapidly, and in this paper, we compare the performance of several species tree inference techniques at estimating
recent species divergences using computer simulation. Simulating gene trees within species trees of different shapes and
with varying tree lengths (T) and population sizes (θ), and evolving sequences on those gene trees, allows us to determine
how phylogenetic accuracy changes in relation to different levels of deep coalescence and phylogenetic signal. When the
probability of discordance between the gene trees and the species tree is high (i.e., T is small and/or θ is large), Bayesian
species tree inference using the multispecies coalescent (BEST) outperforms other methods. The performance of all methods
improves as the total length of the species tree is increased, which reflects the combined benefits of decreasing the proba-
bility of discordance between species trees and gene trees and gaining more accurate estimates for gene trees. Decreasing
the probability of deep coalescences by reducing θ also leads to accuracy gains for most methods. Increasing the number
of loci from 10 to 100 improves accuracy under difficult demographic scenarios (i.e., coalescent units � 4Ne), but 10 loci
are adequate for estimating the correct species tree in cases where deep coalescence is limited or absent. In general, the
correlation between the phylogenetic accuracy and the posterior probability values obtained from BEST is high, although
posterior probabilities are overestimated when the prior distribution for θ is misspecified. [Coalescence; gene trees; incom-
plete lineage sorting; multilocus data; phylogeny reconstruction; simulation; tree shape.]

Simulation studies comparing the performance of phy-
logenetic inference techniques are essential for iden-
tifying situations where particular methods excel or
perform poorly (Felsenstein 1978; Hillis et al. 1994; Hillis
1995). Recently, the estimation of species trees has be-
come a central focus of systematic studies. A species
trees is the multilocus estimate of the unobserved tree
of genealogical relationships among species or pop-
ulations as opposed to genealogies of single alleles.
This increased focus on species tree inference is due in
part to the ever-increasing ease of collecting multilocus
data, a growing appreciation that gene tree variability
renders individual genealogies unreliable predictors
of the species tree, and the incorporation of the mul-
tispecies coalescent model in phylogenetic inference.
New species tree inference techniques are emerging
rapidly (reviewed by Edwards 2009), yet the relative
accuracy of different approaches remains to be studied
under a broad range of simulation conditions.

Modeling the processes that generate discordance be-
tween gene trees and species trees is the main objective
of species tree inference (Pamilo and Nei 1988; Maddi-
son 1997). One stochastic population-level process that
can result in gene tree discordance is deep coalescence,
which creates the opportunity for gene lineages to co-
alesce in ancestral populations in an order that does
not match the species tree. Population demographics
underlie the probability of observing deep coalescence
events in gene genealogies, with the combination of
large effective population sizes and short time intervals
between speciation events producing the most discor-
dance (reviewed by Degnan and Rosenberg 2009). Some
species tree inference methods have incorporated the

multispecies coalescent model to account for deep coa-
lescence of gene lineages (e.g., Rannala and Yang 2003;
reviewed by Liu et al. 2009), but the relationship be-
tween the expected levels of discordance between gene
trees and species trees as a result of deep coalescence
and the accurate estimation of the species tree is not well
understood. Several studies examining the accuracy
of species tree estimation using computer simulations
have demonstrated that species tree inference methods
may outperform methods based on data concatenation
(Edwards et al. 2007; Kubatko and Degnan 2007; Liu
et al. 2008; Kubatko et al. 2009) and that it is possible
to infer species trees despite considerable incomplete
lineage sorting (Maddison and Knowles 2006). Addi-
tional factors that can negatively impact the accurate
estimation of the species tree include migration across
population boundaries, sampling design, and gene tree
estimation errors (Eckert and Carstens 2008; Huang and
Knowles 2009; Leaché 2009; McCormack et al. 2009).

We conduct computer simulations to examine the
relative accuracy of several species tree inference meth-
ods across a wide region of demographic parameter
space that is representative of many empirical study
systems. For example, the population sizes and tree
lengths estimated for hominoids (Burgess and Yang
2008), Drosophila (Hey and Nielsen 2004), fence lizards
(Sceloporus; Leaché 2009), and grass finches (Poephila;
Jennings and Edwards 2005) are contained within the
scope of demographic parameters that we use in our
simulations. In general, previous simulation studies
have contrasted species tree accuracy between relatively
few simulation conditions (e.g., coalescent units = 1Ne
and 10Ne; Maddison and Knowles 2006; McCormack
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FIGURE 1. Species tree parameters illustrated on the maximally
symmetric species tree, including the population size parameter theta
(θ = 4Neµ) and the total tree height (T = generations × µ). Estimat-
ing θ1–θ5is only possible when multiple samples are included for each
species.

et al. 2009). Our simulations span a broad range of co-
alescent units ranging from 0.25Ne to 64Ne and also
include many intermediate values. This simulation
strategy increases the potential for overlap between
the simulation conditions and empirical studies.

We compare the performance of phylogenetic meth-
ods that differ with respect to how gene tree incon-
gruence is modeled, and this allows us to determine
how effectively discordance between gene trees and
species trees is accounted for by different methods us-
ing data simulated under the same demographic condi-
tions. Because the probability of gene tree discordance
also varies with tree shape (Tajima 1983; Degnan and
Rosenberg 2006; Rosenberg and Tao 2008), we conduct
simulations using asymmetric and symmetric species
trees. By comparing phylogenetic accuracy between
analyses utilizing subsets of the simulated data, we also
address the question of how many loci may be neces-
sary to obtain accurate estimates of the species trees
under different demographic scenarios.

METHODS

Species Tree Simulations
We simulated rooted five-taxon species trees using the

EVOLVER program in PAML version 4.1 (Yang 2007).
The relative branch lengths for the species trees were
generated under the birth–death process, with species
sampling using a birth rate λ = 3.0, death rate µ = 0.2,
and sampling fraction ρ = 0.2 (Yang and Rannala 1997).
These birth–death parameters resulted in a relatively
uniform distribution of species trees node ages span-
ning a continuum with the following extremes: 1) node
ages that are young relative to the root, producing trees
having long internal branches and short tip branches
and 2) node ages that are old and relatively close to
the root, producing trees that are bush-like. This sim-
ulation procedure produced a large set of species trees
with variable waiting times between speciation events

(Figures S1 and S2, available from http://www.sysbio
.oxfordjournals.org/). The molecular clock was as-
sumed. We simulated 100 maximally symmetric trees
STSYM = (((1, 2), (3, 4)), 5) (Fig. 1) and 100 asymmetric
trees STASYM = ((((1, 2), 3), 4), 5) (Fig. 2) for each of the
following tree heights, T (the expected number of sub-
stitutions per site from the root to the tips): 0.001, 0.002,
0.004, 0.008, and 0.016. In total, we obtained 1000 species
trees: 500 for each tree shape (asymmetric vs. symmet-
ric) and 100 for each of the five values of T (0.001, 0.002,
0.004, 0.008, and 0.016).

Gene Tree Simulations
Within each species tree, we simulated gene trees

and nucleotide sequence data using the MCcoal pro-
gram in MCMCcoal version 1.2 (Yang 2009). The gene
tree simulations accommodate deep coalescences by
specifying the population size parameter (defined as
θ = 4Neµ, the product of the effective population size,
Ne, and the per nucleotide site per generation mutation
rate, µ) on ancestral nodes (Rannala and Yang 2003). For
any given tree height (T), increasing θ results in higher
levels of deep coalescence and therefore the probability
of simulating gene trees discordant with the species tree
increases as well. While holding θ constant, decreasing
T results in the same pattern. For each species tree, we
simulated 100 gene trees containing one sample per
species using the following θ values: 0.001, 0.002, 0.004,
0.008, and 0.016 (Fig. 2). For each gene tree, we simu-
lated 1000 base pairs of sequence data using the JC69
mutation model (Jukes and Cantor 1969). The model
assumes no recombination within a locus, free recombi-
nation between loci, no migration between species, and
neutral evolution. Thus, we simulated 100,000 bp of se-
quence data for each species tree, with 1 kb contributed
from each of 100 loci. The simulated data are available
online at http://www.sysbio.oxfordjournals.org/.

The 25 combinations of parameter values used for T
and θ to simulate data can be expressed on a timescale
of Ne generations using coalescent units (Kingman 1982,
2000). In general, the expected time for a large sample
of alleles at a neutral locus to find their most recent
common ancestor is 4Ne generations (Tajima 1983).
The coalescent units for the species trees used in our
study range from 0.25 (a high probability of deep coa-
lescence) to 64 (a low probability of deep coalescence)
and are calculated by dividing T by θ/4 (Fig. 2). The
fact that species trees of the same coalescent units can
arise from different combinations of population sizes
or tree lengths is illustrated in Figure 2, where species
trees with 4Ne coalescent units are represented by five
separate parameterizations of T and θ. Although the co-
alescent processes are equivalent, the expected amount
of information available from DNA substitutions is
different under the various parameterizations. For ex-
ample, the expected number of substitutions from the
root of the tree to any tip is proportional to the absolute
values of T and θ (see Table 1).
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2010 LEACHÉ AND RANNALA—SPECIES TREE ACCURACY 3

FIGURE 2. Combinations of population sizes (θ = 4Neµ) and tree heights (T = generations × µ) used to simulate gene trees within species
trees. Only asymmetric trees are shown, although simulations are also performed on maximally symmetric species trees STSYM =
((1, 2), (3, 4)), 5). Coalescent time units (time units normalized by population size) are shown next to each species tree and are obtained by
dividing T by θ/4. In demographic terms, if T and θ = 0.001 and a mutation rate of 1 × 10−8 is assumed, the populations size (Ne) is 25,000
(diploid individuals = 12,500) and the number of generations is 100,000. Decreasing the mutation rate by an order of magnitude to 1 × 10−9

results in Ne = 250,000 and generations = 1,000,000.

Species Tree Inference
We compared the accuracy of species tree estimation

across three types of inference methods that differ with
respect to how gene tree variability is accommodated.
These methods (described below) included data con-
catenation, Bayesian concordance analysis, and models
that incorporate the multispecies coalescent (maximum
likelihood [ML] using gene trees and Bayesian infer-
ence). Phylogenetic accuracy, as used here, is measured
as the percentage of times that a method obtained the
true species tree, and when an estimated species tree
contained a polytomy, we calculated the probability of
the correct resolution. We measured accuracy on un-
rooted trees for comparisons among methods, which

TABLE 1. The average number of variable sites per 1 kb of sequence data simulated under different values of θ and T
Population size (θ)

0.001 0.002 0.004 0.008 0.016
Tree height (T) 0.001 5.66± 0.51 7.77± 0.62 12.00± 0.80 19.96± 1.14 35.45± 1.89

0.002 9.12± 1.03 11.28± 1.04 15.43± 1.14 23.53± 1.45 39.68± 2.17
0.004 16.01± 1.97 18.20± 1.97 22.35± 1.9 30.46± 1.91 46.43± 2.68
0.008 29.53± 3.77 31.62± 3.78 36.05± 3.77 44.27± 3.9 60.08± 4.15
0.016 55.78± 7.36 57.95± 7.30 62.25± 7.27 70.75± 7.09 86.92± 7.48

Notes: Standard deviations are shown below averages. Sequences were simulated under the JC model (Jukes and Cantor 1969) on gene trees
generated from within the asymmetric species trees STASYM = ((((1,2),3),4),5).

reduces the set of possible species trees from 105 to 15.
We inferred species trees using 100,000 bp of data dis-
tributed across 100 independent loci (1 kb per locus). To
examine the influence of the number of loci on accuracy,
we also conducted species tree searches on reduced
data sets containing only 10% of the simulated data (i.e.,
10,000 bp or 10 loci).

Concatenation.—Data concatenation remain one of the
most commonly used methods to analyze multilocus
data despite the fact that this approach does not attempt
to model gene tree variability resulting from deep coa-
lescence. Instead, data from independent loci are com-
bined into a “supermatrix” and analyzed as if they
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4 SYSTEMATIC BIOLOGY VOL. 60

represented one large contiguous locus. We concate-
nated the 100 loci (1 kb each) simulated for each species
tree to produce supermatrices containing 100,000 bp.
We inferred phylogeny for each supermatrix using
maximum parsimony (MP) and Bayesian inference.

We conducted MP searches with the branch-and-
bound search algorithm using PAUP version 4.0b1
(Swofford 2001). For the Bayesian analyses, we use
MrBayes version 3.1.2 (Ronquist and Huelsenbeck
2003). We assumed the JC69 model of nucleotide substi-
tution, which corresponds to the model used to sim-
ulate the data. Because some species tree inference
methods included in our comparison inferred rooted
trees (e.g., BEST and STEM), we enforced a molecular
clock (assuming a uniform Dirichlet prior probabil-
ity distribution on relative branch lengths) to increase
the comparability between methods. An exponential
(λ = 1000) prior distribution specified the tree height,
which corresponds to a mean of 0.001 (i.e., 1/λ) substi-
tutions on a single branch extending from the root of
the tree to the tips. As a result of concatenating large
numbers of characters for just five species, convergence
was reached quickly in the Bayesian analyses as de-
termined by cumulative posterior probability burn-in
plots constructed using the program Are We There Yet?
(Nylander et al. 2008) produced for a subset of the
results. We implemented Bayesian tree searches for
500,000 generations (sampling every 500 and discarding
the first 500 samples as burn-in) using four concurrent
chains (i.e., nchains = 4) with default heating values.

Bayesian concordance analysis.—The overlap among the
posterior probability distributions for gene trees in-
ferred from independent loci contains information re-
lated to the degree of concordance across those genes,
and the predominant genealogical signal contained
in these data is termed the primary concordance tree
(Baum 2007). The primary concordance tree can be
thought of as an estimate of the species tree that is
built from those clades that have the highest posterior
probability across the majority of the genome. We esti-
mated primary concordance trees using the two-stage
Bayesian concordance analysis method outlined by Ané
et al. (2007). First, posterior probability distributions
of gene trees were obtained for each locus using Mr-
Bayes version 3.1.2 under conditions similar to those
used for the concatenated data analyses (see above).
Second, an MCMC analysis implemented in BUCKy
version 1.2b (Ané et al. 2007) was used to estimate the
primary concordance tree from the posterior probabil-
ity distributions obtained for the separate loci. Each
BUCKy analysis utilized MCMC sampling with 100,000
generations (two independent analyses with default
run convergence diagnostics), four chains per run, and
a 10% burn-in factor. The Dirichlet process prior that
controls gene tree clustering was set to α= 0.05 to place
high prior density on one underlying tree since the sim-
ulated data pertaining to any particular Bayesian con-
cordance analysis were simulated from a single species

tree as opposed to representing a collection of loci sim-
ulated from different underlying species histories.

Coalescent models.—The multispecies coalescent model
accommodates deep coalescence into the phylogenetic
inference of species trees (Rannala and Yang 2003; Liu
et al. 2009). ML and Bayesian implementations of this
model for species tree inference are available, and we
use both here.

To obtain ML estimates of the species tree, we used the
program STEM version 1.1a (Kubatko et al. 2009). Cal-
culating the ML, species tree requires a set of resolved
gene trees with branch lengths estimated from multiple
loci and a point estimate for θ. We inferred the ML point
estimates for the gene trees using the branch-and-bound
search algorithm in PAUP version 4.0b1. We assumed
the JC model of nucleotide substitution and enforced
a molecular clock. For each STEM analysis, we set θ to
match the same value used to simulate the data. We
used the simulated annealing algorithm (using default
conditions) to calculate the likelihood score for each
possible species tree topology. This was necessary be-
cause there were many instances where multiple species
trees were tied for the ML score. In cases where the ML
score for the correct species tree was tied with incorrect
species trees, we calculated accuracy as the probability
of randomly selecting the true tree out of the set of trees
with equal ML scores. For example, if STEM recovered
three species trees tied for the ML score, the probability
of selecting the true species tree (if it is contained in the
set of three trees) is 1/3. This is analogous to the way we
treated the other methods of analysis when an estimated
species tree produced a trichotomy—the probability of
selecting the true species tree (if it is one of the three
possible resolved trees) is 1/3.

For Bayesian inference of species trees, we use the
hierarchical Bayesian model implemented in BEST ver-
sion 2.2 (Liu 2008; Liu et al. 2008). The Bayesian ap-
proach estimates the joint posterior distribution of gene
trees from unlinked loci and assumes that loci are cor-
related by a shared species history (Liu and Pearl 2007).
The Bayesian method estimates the species tree directly
from the sequence data and incorporates uncertainty
associated with nucleotide substitution model param-
eter estimates, gene tree estimation, and the coalescent
process (Liu 2008). Convergence using the joint prior
is slow compared to the concatenation approach and
requires longer MCMC analyses (Liu et al. 2008). We
ran MCMC analyses for 10 million generations (sam-
pling every 10,000 steps) with a 50% burn-in fraction.
Convergence was assessed using burn-in plots of likeli-
hood values and posterior probability values for clades
from a subset of analyses. The prior distribution for the
mutation rates across loci was set at uniform (0.1, 2.5),
and the prior distribution for θ was modeled using an
inverse gamma distribution (α= 3,β= 0.03). The mean
of the inverse gamma distribution is β/(α − 1), which
corresponds to a prior mean for the population size of
θ=0.015. We score accuracy using the 50% majority rule
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2010 LEACHÉ AND RANNALA—SPECIES TREE ACCURACY 5

consensus tree, and when the estimated species tree
contained a polytomy, we calculated the probability of
the correct resolution.

Credibility Intervals and Posterior Probability Accuracy
Species tree estimation using the Bayesian imple-

mentation of the multispecies coalescent model (BEST)
produces a posterior probability distribution for the
species tree and posterior probability values for species
relationships. Using our simulation results, we exam-
ined the accuracy of these posterior distributions on the
rooted species trees. We expect that the size of the 95%
credibility intervals will fluctuate with the levels of deep
coalescence and that high levels of deep coalescence will
result in large credibility intervals of species trees. We
also examine the percentage of times that the true tree
is contained in the 95% credible set, which evaluates
the true coverage probability versus the nominal cov-
erage probability. Finally, because the posterior proba-
bility values estimated for clades are commonly used
measures of support for assessing confidence in phy-
logenetic analyses, we used our simulation results to
determine the relationship between estimated posterior
probability values and true phylogenetic accuracy.

RESULTS

Expected Concordance of the Simulated Gene Trees
In the absence of any deep coalescence events pro-

ducing gene trees that are discordant with the species
tree, we would expect to see 100% concordance between
the simulated gene trees and species trees. However, the
population size (θ) and the tree height (T) parameters
applied to the starting species trees result in variable
levels of discordance across the simulated gene trees
and species trees. We use the term “expected concor-
dance” to refer to the concordance between the simu-
lated gene trees and species trees. For the asymmetric
species tree topology, the expected concordance is high-
est (86%) when the coalescent units = 64Ne (Fig. 3). The
expected concordance decreases as the coalescent units
for the species trees decrease, and at 4Ne less than 25% of
the simulated gene trees match the species tree (Fig. 3).
The symmetric species trees produces less discordance
overall, and the expected concordance ranges from a
high of 95% (64Ne) to roughly 35% at 4Ne (Fig. 3).

Species Tree Accuracy
Nucleotide sequence data simulated on the gene trees

under the JC69 model contained 5.6–86.9 variable sites
per 1 kb of sequence data (Table 1). Increasing either the
species tree height (T) or the population size (θ) resulted
in an increase in the number of variable sites (Table 1).
More substitutions are expected to occur on longer trees,
and these data show that increasing θ results in deeper
coalescence times for the gene trees (on average) and
therefore also increases the number of variable sites.

The accuracy of species tree inference in response
to 25 different parameterizations of θ and T using
data concatenation (parsimony and Bayesian inference),
Bayesian concordance analysis (BUCKy), and two im-
plementations of the multispecies coalescent model (ML
using gene trees: STEM; Bayesian estimation: BEST) is
shown in Figure 3. In general, each method of analysis
results in a similar wave-like pattern, whereby species
tree accuracy increases with both increasing values of T
and decreasing values of θ (Fig. 3). The STEM results are
an exception to this pattern since accuracy is improved
primarily by increases in T (Fig. 3). Most of the inference
procedures result in improved performance compared
to the expected concordance (e.g., the accuracy that de-
scribes the concordance between the simulated gene
trees and the species trees), and the overall accuracy
for the symmetric trees is generally higher than the
asymmetric trees (Fig. 3). This latter result may reflect
an influence of the priors on the different tree shapes.
The asymmetric species tree has one possible labeled
history, whereas the maximally symmetric species tree
has two and therefore has twice as much weight in the
prior distribution.

Increasing the number of loci by 10-fold (10–100 loci)
has variable results for the different analytical tech-
niques. For the asymmetric species trees, the greatest
increase in accuracy is seen with the multispecies coa-
lescent model implemented in BEST, which outperforms
the other methods under the most difficult demographic
scenarios tested (small T and large θ; Fig. 3a). For the
symmetric species tree, all methods have high accuracy
(� 95%) with 10 loci when T is large and θ is small,
which leaves little room for improvement when increas-
ing the number of loci by 10-fold (Fig. 3b). Only STEM
does not perform better with the addition of more loci,
and accuracy decreases as much as 25% are seen on the
symmetric species tree simulations (Fig. 3b).

Comparison of Methods
Direct comparisons of the performance of the species

tree inference methods across the 25 different parame-
terizations of θ and T are shown in Figure 4. All meth-
ods perform well at low values of θ and high values
of T (Fig. 4). However, under the more challenging
conditions of a high θ and low T, BEST outperforms
the other methods (Fig. 4). Data concatenation using
MP or Bayesian inference performs equally well for
the asymmetric species trees, but Bayesian inference
shows a slight increase in accuracy under most simula-
tion conditions on the symmetric species trees (Fig. 4).
The BEST method outperforms BUCKy and data con-
catenation under a wide range of simulation condi-
tions on the asymmetric species trees (Fig. 4a). For the
symmetric species trees, BUCKy and BEST outperform
data concatenation under most simulation conditions,
while BUCKy is often slightly more accurate than BEST
(Fig. 4b).

The performance of STEM is generally lower com-
pared to the other methods, and accuracy is often lower

 by guest on January 2, 2011
sysbio.oxfordjournals.org

D
ow

nloaded from
 



6 SYSTEMATIC BIOLOGY VOL. 60

FIGURE 3. Accuracy of species tree inference methods for the (i) asymmetric and the (ii) symmetric species trees using 100 loci. Species
tree accuracy is plotted on the z-axis in relation to theta (θ; x-axis) and tree height (T; y-axis). The improvement in species tree accuracy as a
result of increasing the number of loci by 10-fold (10–100 loci) is illustrated in color on each contour plot and is standardized across the different
analytical methods.

than that of the expected concordance. This result is
expected because gene tree inference errors, in addition
to the coalescent process, are contributing to species
tree uncertainty (Huang and Knowles 2009). Increasing
the amount of information available in the sequence
data to accurately infer gene trees provides STEM with
dramatic gains in accuracy, and this is accomplished

primarily by increasing T (Fig. 4). In contrast to the
other methods of analysis, changes in θ do not have
any clear impact on accuracy when using STEM (Fig. 4).
One source for the low accuracy of STEM results from
a lack of information regarding the ML estimate of the
species tree (i.e., many species trees are tied for the
ML score) rather than the method being biased for an

 by guest on January 2, 2011
sysbio.oxfordjournals.org

D
ow

nloaded from
 



2010 LEACHÉ AND RANNALA—SPECIES TREE ACCURACY 7

FIGURE 4. Comparison of the accuracy of species tree inference methods under simulation for the (i) asymmetric and the (ii) symmetric

species trees using 100 loci. Species tree accuracy is plotted on the y-axis in relation to changes in theta (θ) and tree height (T).
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8 SYSTEMATIC BIOLOGY VOL. 60

TABLE 2. Summary of the STEM results from the asymmetric species tree analyses using 100 loci

Percentage of Accuracy of STEM
Average times the correct Percentage of when producing one

number of species tree is in replicates ML tree
tied ML the set of tied ML producing one

T θ trees trees (%) ML tree (%) Rooted (%) Unrooted (%)
0.001 0.001 14.52 100 0 — —
0.001 0.002 13.20 98 0 — —
0.001 0.004 12.78 93 0 — —
0.001 0.008 20.28 81 0 — —
0.001 0.016 61.68 79 0 — —

0.002 0.001 14.16 96 0 — —
0.002 0.002 17.06 86 2 50.0 50.0
0.002 0.004 23.76 72 3 0.0 33.3
0.002 0.008 26.28 73 6 16.7 50.0
0.002 0.016 18.04 53 16 6.3 25.0

0.004 0.001 3.50 60 41 31.7 63.4
0.004 0.002 3.46 54 49 22.4 53.1
0.004 0.004 2.76 60 48 39.6 52.1
0.004 0.008 3.28 49 58 22.4 43.1
0.004 0.016 2.44 44 70 34.3 40.0

0.008 0.001 1.42 61 85 60.0 74.1
0.008 0.002 1.48 52 82 46.3 67.1
0.008 0.004 1.26 61 87 58.6 72.4
0.008 0.008 1.36 56 88 55.7 63.6
0.008 0.016 1.12 61 94 58.5 67.0

0.016 0.001 1.10 75 95 73.7 85.3
0.016 0.002 1.12 73 94 72.3 81.9
0.016 0.004 1.06 68 97 67.0 81.4
0.016 0.008 1.02 58 99 57.6 66.7
0.016 0.016 1.02 61 99 60.6 67.7

Notes: The percentage of STEM analyses producing a single ML tree increases with T, as does the accuracy of these ML point estimates for both
rooted and unrooted trees. For any specific value of T, there is a greater chance of finding the correct species tree in the set of tied ML trees when
θ is low.

incorrect species tree (Table 2). However, recalculating
the accuracy of STEM using only the most informative
results (i.e., using only those analyses that resulted in
one ML tree) does not result in an significant increase in
accuracy (Table 2).

Credibility Intervals and Posterior Probability Accuracy
The average number of species trees contained in the

95% credible intervals from the BEST analyses decreases

TABLE 3. Summary statistics of the 95% credible intervals of trees obtained from the BEST analyses

Population size (θ)
0.001 0.002 0.004 0.008 0.016

Tree height (T) 0.001 90% (9.89: 1–76) 95% (8.35: 2–52) 95% (9.15: 2–64) 93% (11.37: 3–58) 83% (15.22: 2–73)
99% (5.36: 1–22) 98% (5.07: 1–25) 97% (5.82: 1–19) 97% (10.52: 1–66) 87% (13.82: 1–58)

0.002 91% (3.97: 1–13) 99% (3.65: 1–14) 97% (4.33: 1–40) 96% (4.04: 1–14) 94% (6.27: 1–50)
100% (2.73: 1–10) 100% (2.75: 1–12) 100% (3.17: 1–22) 97% (3.64: 1–16) 96% (5.81: 1–47)

0.004 99% (2.85: 1–13) 98% (2.77: 1–13) 96% (2.5: 1–12) 96% (2.85: 1–12) 95% (4.03: 1–40)
96% (2.13: 1–5) 100% (1.99: 1–6) 100% (1.79: 1–4) 98% (2.04: 1–13) 94% (2.8: 1–12)

0.008 100% (1.93: 1–12) 100% (1.9: 1–11) 100% (1.88: 1–8) 98% (1.95: 1–8) 98% (2.29: 1–9)
98% (1.77: 1–3) 97% (1.64: 1–3) 100% (1.49: 1–3) 99% (1.49: 1–3) 99% (1.89: 1–6)

0.016 100% (1.43: 1–3) 100% (1.42: 1–8) 100% (1.48: 1–6) 100% (1.53: 1–3) 99% (1.79: 1–11)
95% (1.35: 1–3) 96% (1.33: 1–3) 97% (1.31: 1–3) 100% (1.33: 1–3) 99% (1.39: 1–3)

Notes: Results are shown for the asymmetric species trees (above) and maximally symmetric species trees (below) using 100 loci. The coverage
probability (the percentage of times the true species tree is contained in the 95% credible interval) tends to increase with increasing tree heights
(T), while the average number of trees contained in the 95% credible interval (listed in parentheses with the minimum and maximum) decreases.

steadily with increasing tree heights, and when T=0.016
the average number of trees in the 95% credible interval
is < 2 (Table 3). When T = 0.001, the 95% credible in-
tervals contain anywhere from 1 to 76 species trees (Ta-
ble 3). This variability in the size of the credible set likely
reflects the variability in waiting times between specia-
tion events in the simulated species trees. Increasing the
parameter θ tends to result in a larger number of species
trees in the 95% credible intervals, although this rela-
tionship is not strict and intermediate values of θ often
have the smallest credible sets (Table 3).
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The coverage probabilities (the percentage of times
the true species tree is contained in the 95% credible
interval) for the BEST analyses tend to increase with T

and decrease with θ (Table 3). In most cases, the cov-
erage is greater than the nominal value of 95%. Under
the most difficult demographic scenario (T = 0.001 and
θ = 0.016; 0.25Ne), however, the correct species tree is
present in only 83% of the credible sets of trees. Cover-
age probabilities reach 100% when θ � 0.008 and T �
0.002 (Table 3).

In general, the correlation between phylogenetic accu-
racy and the posterior probability values obtained from
BEST is high, although overestimation does occur under
certain demographic scenarios (Fig. 5). For the asym-
metric trees, overestimation occurs when θ = 0.001,
resulting in posterior probability values of 0.85, for ex-
ample, having an accuracy of only 0.57 (Fig. 5a). This
particular value of θ is the furthest from the prior mean
that we used in our analyses (prior mean θ = 0.015).
Thus, it appears that a misspecified prior for θ may
lead to inflated estimates of posterior probabilities. To
compensate for the overestimate of posterior proba-
bility support for those clades with high support, the
accuracy of clades with low posterior probability (e.g.
posterior probability < 0.5) is underestimated (Fig. 5a).
The largest discrepancy in accuracy for the symmetric
trees occurs at midrange posterior probability values
(e.g., 0.5–0.7) when θ = 0.001 (Fig. 5b). However, poste-
rior probability values� 0.8 tend to be either accurate or
underestimates of the true accuracy, with the exception
of a slight overestimation when θ= 0.016 (Fig. 5b).

DISCUSSION

The Influence of Demographic History on Species Tree

Estimation

The speciation history of a clade has a large impact
on the performance of species tree inference methods.
In general, the expected time for a large sample of
alleles at a neutral locus to find their most recent com-
mon ancestor is 4Ne generations (Tajima 1983). Our
simulation covers a wide range of coalescent units
ranging from 0.25Ne to 64Ne, which are likely to de-
scribe the speciation histories typical of many empirical
studies. For instance, studies of recent radiations often
have to contend with large population sizes and recent
divergence events (Belfiore et al. 2008), and this chal-
lenging evolutionary scenario is reflected by coalescent
units � 4Ne.

Within the context of the simulations presented here
(e.g., two topologies for five species and exemplar
sampling), all methods of analysis appear to be highly
accurate when T is large and θ is small (Fig. 3), which
represents a “best case” demographic scenario where
the probability of deep coalescence is minimized. In-
creasing the probability of deep coalescence by in-
creasing θ has minimal impacts on the performance
of methods when T is large (Fig. 4), and this should be
a reassuring result for empiricists studying clades that

FIGURE 5. Accuracy of posterior probability values obtained from
BEST for the (i) asymmetric and the (ii) symmetric species trees for
different values of theta (θ). Average posterior probability values are
based on the analyses using 100 loci.

have a relatively “deep” phylogenetic history. When
more challenging scenarios are created by reducing T

and increasing the probability of deep coalescence (i.e.,
coalescent units < 4Ne; Fig. 4), all methods of analysis
examined here run into trouble. Inferring species trees
using BEST (and to some degree BUCKy) outperforms
the other methods in these most difficult situations, but
the overall accuracy for the estimated species trees re-
mains low (Figs. 3 and 4). Sequencing additional loci
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has the potential to greatly improve species tree accu-
racy (Edwards et al. 2007); however, under the most
difficult demographic scenarios examined here, simu-
lations with 100 loci were still insufficient to produce
highly accurate results.

Species Tree Accuracy using BEST
BEST appears to overestimate posterior probabilities

when the chosen prior for θ assigns a very low prob-
ability density to the true parameter value. In conven-
tional Bayesian phylogenetic analysis, it is known that
model overspecification does not tend to bias posterior
probabilities, while model underspecification leads
to posterior probabilities that are too high on aver-
age (Huelsenbeck and Rannala 2004). In this context,
an overspecified model is not necessarily “incorrect”
when the true model is nested within it (by imposing
certain fixed relationships among the extraneous pa-
rameters), while the underspecified model is strictly
incorrect. Thus, it appears that a misspecified prior
leads to results similar to those obtained with an incor-
rect model—posterior probabilities that overestimate
confidence. Overall, it is encouraging that in our study
posterior probabilities greater than 0.8 tended to be
highly accurate (Fig. 5).

To investigate model misspecification of θ further,
we reran the BEST analyses of the data simulated with
θ = 0.001 (on the asymmetric species tree) with a more
reasonable prior mean (θ = 0.0015) than that used in
the previous analyses (θ= 0.015). Overestimation of the
posterior probability values is less extreme when the
prior value for θ is closer to the true parameter value.
For example, posterior probability values of 0.85 have
an average accuracy of 0.70 (result not shown) versus
an accuracy of only 0.57 when the prior is misspecified
(Fig. 5). Further simulation studies could be helpful in
clarifying whether priors on θ exist that are “conserva-
tive” leading to posterior probabilities that are accurate
(or perhaps underestimate accuracy) when large.

Suggestions for Empirical Studies
Empiricists should be aware of the benefits and lim-

itations associated with different species tree inference
approaches when designing a study and selecting a par-
ticular method of analysis. Although a comparison of
different approaches is often desirable, many species
tree inference methods are not currently capable of
handling large multilocus data sets composed of many
species, dense population sampling, or large numbers
of loci. Many users experience difficulties analyzing
large data sets exceeding approximately 50 samples,
and the Bayesian methods in particular have trouble
reaching stationarity. Some of these difficulties can be
overcome by ensuring that the prior for θ is appropri-
ate (Leaché 2009), but this is not a panacea for every
MCMC convergence problem. Sampling multiple indi-
viduals within species is desirable because it increases
species tree accuracy (Maddison and Knowles 2006;

Liu et al. 2008; Heled and Drummond 2010); how-
ever, including “too many” samples may hinder the
convergence of MCMC analyses. Summary statistic ap-
proaches for estimated species trees may be desirable
under these circumstances because they can accommo-
date larger numbers of samples (Liu et al. 2009). A po-
tential drawback of some species tree inference methods
is the assumption that species assignments are known
with certainty prior to the analysis. This assumption is
required for the multispecies coalescent methods used
here (BEST and STEM). This assumption can be thought
of as a trade-off because establishing species assign-
ments a priori enables these methods to benefit from
the multispecies coalescent model (Rannala and Yang
2003; Liu et al. 2009). Species assignments must be made
carefully because assignment errors can mislead species
tree inference and result in strong support for an incor-
rect species tree (Leaché 2009). Obtaining a multilocus
phylogenetic estimate that is assumption-free regarding
species membership has certain advantages for stud-
ies of recently diverged taxa and species complexes at
the phylogeographic level, including the opportunity
to discover new lineages, test the exclusivity of popula-
tions and species, and track down specimens crossing
species or population boundaries. New species tree in-
ference methods that attempt to treat the number of
species, and the assignment of individuals to species,
as unknown variables are a step in the right direction
(O’Meara 2010).

The results of our simulation study suggest that most
methods of analysis outperform STEM under a wide
range of conditions. Previous simulation studies have
suggested that the accuracy of STEM is higher com-
pared to data concatenation (Kubatko et al. 2009) and to
the minimize deep coalescences method (McCormack
et al. 2009). The accuracy of STEM should be high when
gene trees are known with certainty, but our simu-
lation strategy produced some challenging data sets
containing very little information from which to infer
accurate gene trees. As the information content avail-
able in the simulated data diminishes, STEM results in
an increased number of species trees that are tied for the
ML score (Table 2). STEM is not misleading under these
circumstances, rather, STEM is uninformative. Users of
STEM should always examine a collection of trees in the
neighborhood of the ML tree to gain a sense of the in-
formativeness of the analysis, especially in cases where
the accuracy of the estimated gene trees (and branch
lengths) is suspected to be low. It is common for empir-
ical data to produce genealogies containing ambiguities
in relationships and branch length uncertainty, and from
our perspective, species tree inference methods that can
accommodate this uncertainty have an advantage over
methods that rely on point estimates.

Future Directions
There are several aspects of our simulation strat-

egy that can be expanded upon to capture additional
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complexities inherent to real empirical data sets. First,
future simulation studies should consider more com-
plex evolutionary histories involving more species, ad-
ditional substitution model complexity, and population
substructure. Second, the impacts of missing data on
species tree inference remain unstudied, and this seems
like an important area of investigation because it is of-
ten difficult to collect multilocus data sets with complete
representation for each sample. Finally, an underlying
assumption of species tree inference is that gene tree
discordance is the result of deep coalescence, and it
is unclear how the processes of gene flow, recombina-
tion, selection, and gene duplication and extinction will
impact species tree accuracy.

SUPPLEMENTAL MATERIAL

Supplementary material can be found at http://www
.sysbio.oxfordjournals.org/.

FUNDING

This work was supported by a National Science Foun-
dation Postdoctoral Research Fellowship in Biological
Informatics (DBI-0805455) awarded to A.D.L.

ACKNOWLEDGEMENTS

We thank M. Fujita, J. Inoue, Y. Wang, and Z. Yang for
help with various aspects of the research. We also thank
F. Burbrink, L. Knowles, L. Kubatko, L. Liu, B. Moore,
three anonymous reviewers, and the Huelsenbeck,
Moritz, and McGuire laboratory at UC Berkeley for
their insightful comments and suggestions.

REFERENCES
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