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Meiotic gene-conversion rate and tract length variation
in the human genome

Badri Padhukasahasram*,1,2 and Bruce Rannala2

Meiotic recombination occurs in the form of two different mechanisms called crossing-over and gene-conversion and both

processes have an important role in shaping genetic variation in populations. Although variation in crossing-over rates has been

studied extensively using sperm-typing experiments, pedigree studies and population genetic approaches, our knowledge of

variation in gene-conversion parameters (ie, rates and mean tract lengths) remains far from complete. To explore variability in

population gene-conversion rates and its relationship to crossing-over rate variation patterns, we have developed and validated

using coalescent simulations a comprehensive Bayesian full-likelihood method that can jointly infer crossing-over and gene-

conversion rates as well as tract lengths from population genomic data under general variable rate models with recombination

hotspots. Here, we apply this new method to SNP data from multiple human populations and attempt to characterize for the

first time the fine-scale variation in gene-conversion parameters along the human genome. We find that the estimated ratio of

gene-conversion to crossing-over rates varies considerably across genomic regions as well as between populations. However,

there is a great degree of uncertainty associated with such estimates. We also find substantial evidence for variation in the

mean conversion tract length. The estimated tract lengths did not show any negative relationship with the local heterozygosity

levels in our analysis.
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INTRODUCTION

Meiotic recombination is an important determinant of linkage
disequilibrium (LD; ie, the non-random associations between alleles)
in population genomic data. This process shuffles material between
homologous chromosomes and creates mosaic chromosomes during
the first meiotic division. Current models allow for two different
mechanisms of genetic exchange called crossing-over (possibly
accompanied by gene-conversion) and gene-conversion (without
crossing-over). Crossing-over involves the reciprocal exchange of
large chromosomal segments via double-stranded DNA breaks while
gene-conversion involves the transfer of short-tracts. Note that
conversion events accompanying crossing-over cannot be detected
by population based methods, and so here gene-conversion refers to
only events not accompanied by crossing-over. Both mechanisms
contribute to genetic diversity by breaking down allelic associations
and lead to the decay of LD over time.

Many population genetic studies have ignored the effects of gene-
conversion although crossing-over and gene-conversion events have
qualitatively different effects on the evolutionary history of chromo-
somes and leave different traces in genomic polymorphism data.
Although crossing-over rates are known to vary tremendously, by
several orders of magnitude at the fine-scale (kb),1–9 results are
limited concerning the homologous gene-conversion process and the
extent to which meiotic conversion rates and tract lengths vary along
the human genome.10–15 Gene-conversion rates have been estimated
by experimental studies in yeast and fruit flies16–20 and tract lengths

are estimated to be in the range of 350–2000 bp in these organisms. A
basic knowledge of gene-conversion rate and tract length variation
will further our understanding of the recombination process, refine
the design of association mapping studies and help fine-tune methods
for inferring demographic parameters and natural selection along the
human genome. Using sperm typing,12 estimated gene-conversion
rates at three known human crossing-over hotspots and found that all
three regions showed evidence of being gene-conversion hot spots as
well. They estimated that gene-conversion occurs at a rate of 4–15
times the crossing-over rate and mean tract lengths are in the range
of 54–132 bp. In all cases, the peaks of gene-conversion rates
coincided with the peaks of crossing-over rates, which suggests that
the molecular mechanisms generating most cross-overs and gene-
conversion events are related.21

Currently, there exist several statistical methods designed to jointly
estimate the crossing-over and gene-conversion parameters from
population genetic data. Methods developed by (refs 11, 22, 23)
generalize the composite likelihood approach first proposed in
Hudson24 (also see McVean et al25). These approaches divide the
data into small subsets (pairs or triplets of segregating sites), calculate
likelihoods for these subsets and multiply them together. This is
equivalent to assuming that they are independent. The likelihood thus
obtained is called the composite likelihood. Composite likelihood
methods use pre-computed likelihood look-up tables for all the
possible configurations of the subsets and are typically fast. However,
because the subsets are not actually independent of one another, they
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only approximate the likelihood of the data. One consequence is that
correct confidence intervals for composite likelihood estimates can
only be obtained by using simulations. Another consequence is that
information is potentially discarded because higher-order multilocus
associations are ignored.

Padhukasahasram et al14 described a rejection-sampling method
that simultaneously utilizes informative long-range and short-range
summary statistics to infer the recombination parameters. This
approach also ignores some of the information available in the data
for the sake of computational efficiency. However, it has the
advantage that confidence intervals may be directly calculated from
the likelihood surface without simulations.

Another approximate likelihood method for estimating crossing-
over rates (called the product of approximate conditionals, or PACs)
that was proposed in Li and Stephens26 has also been extended by
several subsequent studies to include gene-conversion. Briefly, this
method infers recombination parameters under a heuristic model
using all the information available in the data and is computationally
efficient. However, inference is currently restricted to the constant
population size Wright–Fisher model only. Hellenthal27 uses a
PAC model where the conversion tract can include at most one
marker. Gay et al15 improved on their work to allow for arbitrary
gene-conversion tract lengths and this method can be used for
co-estimating crossing-over and gene-conversion rates as well as
tract lengths. One simplification of their model was that they
disallowed overlapping gene-conversion events. Yin et al28 further
generalized this work to allow for overlapping events, leading to a
more accurate PAC-based method for jointly estimating crossing-over,
gene-conversion and the mean conversion tract length.

Here, we further develop a recent Bayesian population genomic
approach we proposed to study gene-conversion rate variation and
its relationship to crossing-over. Padhukasahasram and Rannala29

introduced a coalescent-based Markov Chain Monte Carlo (MCMC)
method for jointly estimating crossing-over, gene-conversion rates
and mean conversion tract lengths from population genomic data. In
this article, we further develop and extend this full-likelihood
methodology to infer all three recombination parameters under
models with recombination hotspots. Full-likelihood methods such
as ours are appealing from a statistical perspective because they
perform model-based inference based on the exact configuration of
the observed sample of haplotypes or genotypes and thus their
efficiency is expected to be optimal in theory. In contrast to the
recombination model used previously, here we allow the relative rates
of gene-conversion to crossing-over (f) to take different possible
values depending on whether we are located within a recombination
hotspot or outside and include many novel proposal moves designed
to improve the efficiency of the MCMC algorithm. We first validate
the new method using coalescent simulations and then apply it to
two human data sets genotyped in the human leukocyte antigen
(HLA) region of chromosome 6 and the MS32 region on
chromosome 1 and estimate the conversion parameters for these
loci. Next, we use it to analyze SNP data from three different human
populations (Northwest European descent residing in Utah (CEU),
Yoruba from Ibadan, Nigeria (YRI) and Han Chinese in Beijing
(CHB)) genotyped as part of the HapMap project. One goal is to
address several longstanding open questions about the process of
meiotic gene-conversion and, in particular, how rate parameters vary
across the human genome. We also explore how gene-conversion
rates vary in relation to crossing-over rates and check whether these
patterns are conserved between populations. Finally, we examine
whether mean conversion tract lengths are variable along the genome

or between populations and test whether gene-conversion parameters
show any systematic relationship with the local heterozygosity levels.

MATERIALS AND METHODS
Our recombination inference method is based on the retrospective coalescent

framework in which the genealogy of a sample of sequences is approximated as

a graph called the ancestral recombination graph (ARG).30–32 In particular, the

method uses the coalescent with gene-conversion as described in Wiuf and

Hein.33 We use a variable recombination rate model with background rate

variation and hotspots as part of our inference procedure. In this model, the

background crossing-over rate follows a gamma distribution with shape and

scale parameters and includes recombination hotspots that arise according to

the process described in Wang and Rannala34. The extension of the Wang and

Rannala model described in Padhukasahasram and Rannala29 assumed that

gene-conversion and crossing-over rates vary in an identical pattern such that

the ratio of rates (f) is constant along the sequence. Thus, all crossing-over

hotspots are also gene-conversion hotspots and both parameters can take

different values in each of the marker intervals. Transitions from hotspots to

non-hotspots or vice versa occur at points referred to as change points. We

propose various modifications to these change points in the MCMC chain to

modify the locations of hotspots along the sequence.

The model we use here is a variation of the recombination model described

in Padhukasahasram and Rannala.29 In contrast to the previous model, the

present model allows the ratio of gene-conversion to crossing-over rates to vary

along the sequence, taking one of two possible values, f1 or f2, depending on

whether or not the sequence is within a hotspot, respectively. The MCMC

program we have developed, attempts to jointly estimate both f1 and f2 along

with other parameters of interest from the data. In addition, we perform two

different kinds of inferences here based on models with hotspots where: (i) the

mean tract length (m) is fixed to some reasonable value (eg, 125 bp); and (ii)

the mean tract length is jointly estimated along with all other recombination

parameters.

Recombination hotspot model
Following Wang and Rannala,34 it is assumed that the distribution of

recombination hotspots along chromosomes follows a Markov process.

Hotspots arise with an instantaneous rate of l1 and revert with an

instantaneous rate of l2. The waiting distance until the occurrence of a

hotspot is exponentially distributed with parameter l1 and the distance till the

loss of a hotspot is also exponentially distributed with a rate of l2. The

parameters 1/l1 and 1/l2 represent the average distance between hotspots and

the average width of a hotspot, respectively. The probability that a sequence

starts with a hotspot is l1/(l1þ l2). In Appendix A1–A3 (Supplementary

Information), we present some useful theoretical results for this recombination

model. Three variables are associated with each hotspot, denoted by X1, X2 and

Z, and represent the starting location, the ending location and the intensity of

the hotspot, respectively. Variable Z has a prior distribution that is log-normal

with parameters mz¼ 9 and sz¼ 1.

Background rate variation
The prior distribution of background recombination rates between SNPs is

assumed to follow a G distribution with shape (sh) and scale (sc) parameters.

The shape parameter is fixed to 100, while the scale parameter is estimated via

the MCMC algorithm.

Let X denote a sample of haplotypes or genotypes and let GS denote an ARG

consistent with the data. Many of the moves in the MCMC chain in the new

version are similar to those previously described in Padhukasahasram and

Rannala.29 The moves involving changes in hotspot locations, widths, etc are

identical to those in Wang and Rannala,34 except that the prior probability of a

genealogy involves terms r, f1 and f2 and mean tract length m. Note that the

r vector, f1 and f2 together determine the vector of g values (ie, the

gene-conversion rates for marker intervals) in the variable recombination

rate model. Let H denote the set of hotspots and Hi represent the ith hotspot in

the sequence. Each Hi is a vector with three variables the start (X1), end (X2)

and intensity (Z) of the hotspot. Let f( � ) denote priors, Q( � ) denote proposal

distributions and let l(X|GS, y) be the likelihood of the data given an ARG,
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GS, and the population mutation rate, y. Variables followed by a prime sign

denote the proposals. In Appendix A4, we have described in detail the moves

used in the new model (see references 35 and 36 for running multiple chains).

RESULTS

Checking the MCMC program
We first ran the MCMC program without any data and compared the
posterior distributions of various quantities of interest with their
prior distribution. Supplementary Figures S1–S4 show the results of
this analysis. We find that when the likelihood ratio is set equal to
1 and the chain is run without data, the posterior distributions for the
variables match their priors as expected. The priors used for f1 and f2
in these tests were uniform between 0 and 5. For hotspot intensity
and hotspot width, the priors are described in the Materials and
methods section and in Appendix A1 (Supplementary Information).

Test runs on simulated data
To check the correctness of our MCMC algorithm, we also tested the
method on data sets simulated with both crossing-over and gene-
conversion hotspots. We simulated 10 independent data sets of 20 kb
sequences, 50 samples with a single recombination hotspot of width
2 kb at the center of the sequence, y¼ 20.0 and varying values of
gene-conversion tract length m. Supplementary Figure S5 and
Supplementary Table S1 show the results obtained for this analysis.
We find that the estimated locations of recombination hotspots,
intensities and mean tract lengths are consistent with the values used
in simulations.

Analysis of data from MHC and MS32 regions in humans
We applied the new method to two data sets from the HLA and MS32
regions that have been previously studied by sperm typing.3,37

Figure 1 Crossing-over (r) and gene-conversion (g) rate variation in the HLA

data set assuming m¼125 bp. The solid green curve shows the posterior

means of the estimated rates while the dashed blue and red lines represent

the lower and upper bounds of the 95% credible intervals, respectively.

Figure 2 Crossing-over (r) and gene-conversion (g) rate variation in the

MS32 data set assuming m¼125 bp. The solid green curve shows the

posterior means of the estimated rates while the dashed blue and red lines

represent the lower and upper bounds of the 95% credible intervals,

respectively.
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The HLA data set consists of 274 SNPs distributed across a
0.216 Mb region, sampled from 50 unrelated individuals. Six
hotspots were revealed in the sperm-typing study3 and the data
have been previously analyzed using a composite likelihood
approach.6 Jeffreys et al37 investigated recombination rates in the
MS32 and surrounding regions by both sperm-typing and
coalescent analysis of genotypes (recombination rate estimated
using the programs LDhat and PHASE). The MS32 data set
consists of 206 SNPs sampled from 80 individuals and distributed
across a 0.206 Mb region. For both data sets, we considered subsets
of 20 consecutive markers and applied our inference algorithm.
Figures 1–4 and Supplementary Figures S9 and S10 show the results
obtained from this analysis. For Figures 3 and 4, we estimated the
parameter f1 jointly with all other parameters including the mean
tract length m. In the analyses corresponding to Supplementary

Figures S9 and S10, we fixed m¼ 125 bp (estimates obtained in
Jeffreys and May12) and inferred all other parameters (ie, r, g, f1, f2,
etc) jointly. We can see that patterns of crossing-over and gene-
conversion rate variation are quite similar in both MS32 and HLA.
We can clearly see that peaks of crossing-over are also regions of
high population gene-conversion rates. f1 estimates vary across
different hotspots and the posterior distributions include 1 in many
cases. The estimates are also dependent on assumptions about tract
length (compare Figure 3 vs Supplementary Figure S9, and Figure 4
vs Supplementary Figure S10).

Analysis of data from chromosome 19 for CEU, YRI and CHB
HapMap populations
We applied our inference procedure to 25 genomic windows of 20
markers from human chromosome 19 genotyped in 3 different

Figure 4 Posterior distribution of f1 in MS32 data set. Mean tract length m was jointly estimated along with all other parameters for 20 marker windows.

f1 denotes the relative rate of gene-conversion to crossing-over within a inferred hotspot.

Figure 3 Posterior distribution of f1 in HLA data set. Mean tract length m was jointly estimated along with all other parameters for 20 marker windows.

f1 denotes the relative rate of gene-conversion to crossing-over within a inferred hotspot.
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populations CEU, YRI and CHB as part of the HapMap project. We
considered 60, 60 and 45 unrelated individuals, respectively, from
these 3 populations in this analysis. We summarize the results
obtained to address several questions below.

Is f1 variable along the genome or among populations?
Table 1 shows the posterior modes of f1 estimated for 25 genomic
windows analyzed for each of the 3 HapMap populations. We find
that estimates of f1 vary substantially across the genome. However,
large uncertainties are associated with these estimates and conse-
quently credible intervals are wide. For many windows, there is
considerable overlap between 95% credible intervals. We also find that
for comparable locations in the genome estimated f1’s are variable
across populations (see Table 1).

Is m variable along the genome or among populations?
Table 2 shows the posterior means for the mean conversion tract
lengths and 95% credible intervals for 25 genomic windows analyzed
for each of the 3 populations. As before, we see that there is great
uncertainty in the estimated tract lengths and credible intervals are
wide. There is evidence that m varies across genomic regions as well as
between populations for comparable regions (also see results in
Supplementary Figures S6 and S7).

Is f correlated with crossing-over rates?
Previous studies in Yeast and Drosophila melanogaster have suggested
that f may be higher in regions with reduced crossing-over rates.38–40

To explore this issue, we looked at the distribution of the ratio f2/f1 in
each of the HapMap populations for the 25 windows. Table 3 shows
the estimates (and 95% credible intervals) for this joint parameter.
If there were a systematic difference in f that depended on the levels
of crossing-over, we would expect this variable to assume high values
(eg, 41).

Are gene-conversion parameters correlated with local
heterozygosity levels?
Previous studies have also suggested that m may vary with levels of
heterozygosity in a genomic region.38–40 To further examine this
question, we first calculated the average heterozygosity levels for the
regions corresponding to the 20 marker windows of HapMap using
data from the 1000 Genomes Project.41 We estimated heterozygosity
levels using all the individuals in the EUR, AFR and ASN groups of
this data set. Then, we made scatterplots of the m values estimated in
CEU, YRI and CHB of HapMap versus average heterozygosity values
as calculated in the three groups (ie, EUR, AFR and ASN,
respectively) from the 1000 Genomes Project. These results are
shown in Supplementary Figure S11. The Spearman’s rank correlation
between these two variables was 0.34 (P-value¼ 0.09677) for CEU,
0.322 (P-value¼ 0.1163) for YRI, 0.572 (P-value¼ 0.003288) for CHB

Table 1 Estimated values of f1 in chromosome 19 in HapMap data sets

CEU YRI CHB

Position (Mb) f1 CI Position (Mb) f1 CI Position (Mb) f1 CI

0.046–0.258 0.5 0–11 0.195–0.267 104.5 0–273 0.195–0.262 2.5 0–103.024

0.262–0.318 12.5 0–163 0.270–0.324 12.5 0–63 0.267–0.323 1.5 0–32.625

0.323–0.367 5.5 0–25 0.327–0.382 8.5 0–22 0.324–0.376 3.5 0–85.648

0.370–0.423 1.5 0–138 0.382–0.445 6.5 0–160 0.379–0.436 1.5 0.013–15.09

0.429–0.480 1.5 0–21 0.446–0.498 23.5 2.6–60.3 0.442–0.495 6.5 0–112.104

0.484–0.526 17.5 0–324 — — — — — —

0.527–0.580 0.5 0–146 0.500–0.565 5.5 0–49.7 0.498–0.552 17.5 0–47.734

0.589–0.636 0.5 0–66 0.569–0.636 7.5 0–131.7 0.556–0.626 8.5 0–74.24

0.638–0.702 60.5 1.1–99 0.638–0.708 5.5 0–62.7 0.626–0.694 1.5 0–263.804

0.703–0.757 8.5 0–128 0.708–0.781 37.5 0–127.6 0.694–0.768 17.5 0–51.324

0.763–0.817 0.5 0–57 0.785–0.840 120.5 0–120.9 0.771–0.820 6.5 0–107.277

0.819–0.874 6.5 1.1–13 0.840–0.927 34.5 0–243.2 0.822–0.901 14.5 0.532–44.80

0.878–0.953 0.5 0–181 — — — 0.906–0.975 1.5 0–12.008

0.954–1.007 24.5 0–146 0.935–0.992 17.5 0–67.1 0.982–1.025 18.5 0–81.972

1.007–1.058 2.5 0–28 0.993–1.052 3.5 0–40.7 1.026–1.087 1.5 0–8.317

1.061–1.116 0.5 0–99 1.058–1.116 1.5 0–216.1 1.087–1.162 2.5 0–70.347

1.121–1.189 0.5 0.18–58 1.121–1.190 3.5 0–80.3 — — —

1.190–1.248 0.5 0–185 1.193–1.255 3.5 0–113.1 1.165–1.228 0.5 0–92.995

1.253–1.292 1.5 0–59 1.256–1.301 35.5 0–107.8 1.234–1.279 14.5 0–56.752

1.299–1.342 0.5 0–140 1.308–1.366 101.5 0.5–190 1.280–1.335 1.5 0–66.052

1.347–1.393 27.5 0–86 1.368–1.411 4.5 0–50.2 1.335–1.395 1.5 0–133.106

1.395–1.446 67.5 0–106 — — — 1.395–1.447 7.5 0–292.278

1.447–1.484 0.5 0–107 1.422–1.477 28.5 0–64.7 1.456–1.490 9.5 0–151.625

1.486–1.540 4.5 0–109 1.477–1.537 0.5 0–74.6 1.491–1.564 11.5 0–113.341

1.544–1.590 3.5 0–146 1.540–1.605 27.5 0–142.9 1.566–1.624 20.5 0–244.858

— — 1.609–1.667 5.5 0–208.9 1.627–1.686 2.5 1.745–107.5

— — 1.674–1.753 5.5 0–77.1 1.690–1.762 3.5 0–182.81

— — 1.756–1.805 9.5 0–170.4 — — —

Abbreviation: CI, 95% credible intervals.
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and 0.34 (P-value¼ 0.002971) considering all the 75 windows. In
addition, we also determined the average rate of gene-conversion
(gaverage) for all the 25 windows in these 3 populations as inferred by
our program and calculated the Spearman’s rank correlation with
heterozygosity estimates obtained from 1000 genomes project data.
The corresponding values are �0.12 (P-value¼ 0.5663) for CEU,
�0.028 (P-value¼ 0.8961) for YRI, �0.501 (P-value¼ 0.011) for
CHB and �0.163 (P-value¼ 0.1624) considering all 75 windows.
Thus, we do not see any clear relationship between gene-conversion
parameters and levels of heterozygosity for these data.

DISCUSSION

We have developed and validated a powerful full-likelihood MCMC
method for inferring recombination parameters from population
genomic data under a Bayesian framework. This method is based on
the approach originally proposed in Wang and Rannala34,42 and can
jointly infer the three fundamental parameters of recombination (ie,
crossing-over, gene-conversion and tract length) under variable rate
models that include recombination hotspots. The MCMC algorithm
has been implemented as an updated version of the software package
InferRho (see Wang and Rannala42). In addition to the moves already
described in Padhukasahasram and Rannala29, the current program
uses a new recombination model and implements many novel
proposal schemes for updating the locations of recombination
hotspots and the gene-conversion parameters. The method is also
more general than before and allows the ratio of gene-conversion to

crossing-over (f) to assume two possible values depending on whether
we are within a hotspot or outside. We applied the new method to
data from MHC and MS32 regions of the human genome, which are
known to harbor many recombination hotspots. We found that
InferRho identifies most of the major hotspots already known in these
data sets (as in Wang and Rannala42). In addition, we also find that
regions with elevated crossing-over rates are regions of higher gene-
conversion rates as well which is consistent with the experimental
findings of Jeffreys and May.12

To explore variability in gene-conversion parameters, we also
applied our method to 25 windows of 20 markers each on
chromosome 19 from 3 human populations CEU, YRI and CHB of
HapMap. Owing to computational constraints imposed by this more
comprehensive full-likelihood method, we did not attempt to carry
out an extensive analysis over the entire genome. We can draw several
conclusions as a result of this analysis. We find that the uncertainty in
the estimates of f1 are high for data sets of this size. Indeed, for many
windows the 95% credible intervals overlap with each other and most
of these intervals include 1.0. The great uncertainty in f1 reflects the
limited information about conversion in population genomic data
combined with confounding when attempting to infer gene-conver-
sion rates and tract lengths jointly. We notice considerable differences
in the estimated values of the parameters f1 and m across different
windows as well as across populations for comparable positions in the
genome. As recombination patterns and rates can vary between
individuals and also evolve with time, the differences between

Table 2 Estimated values of mean tract length (m) in chromosome 19 in HapMap data sets

CEU YRI CHB

Position (Mb) m CI Position (Mb) m CI Position (Mb) m CI

0.046–0.258 682.782 376–989 0.195–0.267 76.900 0–427 0.195–0.262 101.133 0–482

0.262–0.318 306.136 0–978 0.270–0.324 532.06 135–928 0.267–0.323 273.065 0–893

0.323–0.367 481.574 0–972 0.327–0.382 839.011 678–999 0.324–0.376 369.153 0–967

0.37–0.423 71.397 0–310 0.382–0.445 758.658 517–999 0.379–0.436 827.947 655–999

0.429–0.48 871.548 743–999 0.446–0.498 714.213 428–999 0.442–0.495 463.396 0–971

0.484–0.526 271.017 0–879 — — — — — —

0.527–0.58 732.477 465–999 0.500–0.565 841.073 682–999 0.498–0.552 397.629 0–954

0.589–0.636 831.686 663–999 0.569–0.636 610.861 222–999 0.556–0.626 765.853 531–999

0.638–0.702 763.92 527–999 0.638–0.708 930.193 860–999 0.626–0.694 300.969 0–710

0.703–0.757 859.09 718–999 0.708–0.781 837.227 674–999 0.694–0.768 533.389 249–817

0.763–0.817 873.258 746–999 0.785–0.840 153.213 20–285 0.771–0.820 554.327 109–998

0.819–0.874 660.092 321–999 0.840–0.927 339.305 0–955 0.822–0.901 349.159 0–737

0.878–0.953 198.099 0–800 — — — 0.906–0.975 744.217 489–998

0.954–1.007 271.689 0–835 0.935–0.992 432.540 0–885 0.982–1.025 743.638 487–999

1.007–1.058 837.089 674–999 0.993–1.052 901.336 802–999 1.026–1.087 855.013 710–999

1.061–1.116 443.335 0–966 1.058–1.116 53.583 0–264 1.087–1.162 289.055 0–922

1.121–1.189 315.011 49–580 1.121–1.190 647.166 294–999 — — —

1.19–1.248 57.6284 0–334 1.193–1.255 740.960 481–999 1.165–1.228 168.509 0–831

1.253–1.292 113.828 0–252 1.256–1.301 814.298 628–999 1.234–1.279 242.181 0–837

1.299–1.342 723.158 446–999 1.308–1.366 168.048 0–791 1.280–1.335 596.641 193–999

1.347–1.393 294.551 0–865 1.368–1.411 678.923 360–997 1.335–1.395 159.323 0–795

1.395–1.446 230.284 0–899 — — — 1.395–1.447 652.857 306–999

1.447–1.484 672.412 345–999 1.422–1.477 856.071 712–999 1.456–1.490 711.126 426–995

1.486–1.540 887.049 774–999 1.477–1.537 650.601 301–999 1.491–1.564 94.1493 0–275

1.544–1.59 173.743 0–628 1.540–1.605 133.782 0–648 1.566–1.624 92.608 0–192

— — — 1.609–1.667 130.556 0–267 1.627–1.686 895.63 791–999

— — — 1.674–1.753 549.284 99–999 1.690–1.762 615.025 230–999

— — — 1.756–1.805 865.987 732–999 — — —

Abbreviation: CI, 95% credible intervals.
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populations might be reflecting the average of the differences between
the individuals in different ancestral groups. However, given the high
degree of uncertainty in the relative rate estimates, it is difficult to
draw strong conclusions.

Previous studies in Yeast and Drosophila melanogaster have
suggested that f may be higher in regions with reduced crossing-over
rates.38–40 It has also been speculated that the rate of gene-conversion
may go up as the rate of crossing-over goes down, that is, there is
shunting of incipient cross-overs toward conversions.37 In our
analysis, we found that f2/f1 estimates tend to be 41 although
credible intervals are wide and include 1 for most windows.
Furthermore, it has also been suggested that mean conversion tract
lengths may vary with levels of heterozygosity in a region. If a
heterozygosity-dependent form of gene-conversion were to be
operating,39,40 regions with reduced variability are expected to have
higher gene-conversion rates and longer tract lengths on average. Our
results using the three populations of HapMap did not indicate any
negative correlations between heterozygosity estimates and mean tract
length estimates. In addition, we do not see any clear relationship
between conversion rates and heterozygosity in our data. Future work,
with extensive estimates using denser SNP data (eg, from the 1000
genomes project) and much larger number of windows across the
entire genome is likely to give us a better picture of the relationship
between these variables and resolve these various empirical questions
about gene-conversion more definitively.

In Supplementary Figure S8 and Supplementary Table S2, we show
the effect of increasing SNP density on the posterior distribution of
recombination parameters for simulated data sets. We can see that for
the same set of recombination parameters, increasing y by threefold
(ie, from 10.0 to 30.0 for the 10 kb sequences), generally decreases the
variance of the posterior distributions of f1 and m. This implies that
we expect to obtain tighter credible intervals in denser polymorphism
data. With denser SNP data such as from 1000 genomes, we would
apply InferRho to many more (100s of) shorter windows (5–20 kb)
spread across the entire genome and omit variants with minor allele
frequency o10% from all analyses. Doing this kind of large-scale
analysis will also necessitate modifications to the program as well as
access to greater computing resources, so that many more jobs can be
run in parallel. We are planning to implement several optimizations
to boost the speed of the new version of MCMC algorithm. For
example, InferRho currently considers crossing-over and gene-con-
version events that occur in regions that have reached their marginal
MRCAs. However, a subset of such events does not affect the sample
configuration at all and can be omitted. In addition, ARGs can be
based on recently developed approximations that closely mimic the
standard coalescent process.43,44 Both these steps will help to make
ARGs more compact on average. In future versions of InferRho,
we also plan to use pre-computed look-up tables, when calculating
the rates of informative recombination events,29 which are used
repeatedly in acceptance probability calculations and encode

Table 3 Estimated values of f2/f1 in chromosome 19 in HapMap data sets

CEU YRI CHB

Position (Mb) f2/f1 CI Position (Mb) f2/f1 CI Position (Mb) f2/f1 CI

0.046–0.258 40.558 0–196.1 0.195–0.267 0.872 0–1.9 0.195–0.262 0.967 0–1.9

0.262–0.318 1.370 0–3.0 0.270–0.324 0.909 0–2.7 0.267–0.323 5.764 0–17.0

0.323–0.367 5.029 0.04–10 0.327–0.382 7.140 0–14 0.324–0.376 1.672 0–4.8

0.37–0.423 11.674 0–45.2 0.382–0.445 3.798 0–7.7 0.379–0.436 27.95 0–89.5

0.429–0.48 1.889 0–4.1 0.446–0.498 1.209 0–2.7 0.442–0.495 25.49 0–52.2

0.484–0.526 1.656 0–3.9 — — — — — —

0.527–0.58 97.243 0–206 0.500–0.565 1.563 0–4.7 0.498–0.552 2.266 0–4.9

0.589–0.636 137.804 0–305 0.569–0.636 0.358 0–0.8 0.556–0.626 0.833 0–3.7

0.638–0.702 0.385 0–0.77 0.638–0.708 1.372 0–3.6 0.626–0.694 1.804 0–3.6

0.703–0.757 0.531 0–1.1 0.708–0.781 0.883 0.05–1.7 0.694–0.768 0.493 0–1.1

0.763–0.817 3.721 0.06–7.3 0.785–0.840 2.963 0–7.3 0.771–0.820 1.897 0–3.8

0.819–0.874 1.949 0–4.4 0.840–0.927 0.712 0–1.6 0.822–0.901 1.631 0–4.6

0.878–0.953 35.105 0–71.6 — — — 0.906–0.975 9.177 0–24.3

0.954–1.007 1.026 0–2.9 0.935–0.992 1.407 0–3.7 0.982–1.025 3.451 0–6.9

1.007–1.058 1.344 0–4.2 0.993–1.052 3.664 0–10.2 1.026–1.087 5.293 0.17–10.4

1.061–1.116 21.588 0–71.8 1.058–1.116 2.108 0–6.5 1.087–1.162 5.404 0–13.7

1.121–1.189 8.069 0–22.4 1.121–1.190 1.429 0–3.7 — — —

1.19–1.248 20.158 0–40.6 1.193–1.255 0.876 0–2.7 1.165–1.228 18.56 0–37.2

1.253–1.292 8.001 0–26.8 1.256–1.301 1.860 0–4.5 1.234–1.279 3.095 0–6.4

1.299–1.342 51.474 0–130.5 1.308–1.366 1.675 0.04–3.3 1.280–1.335 7.252 0–15.1

1.347–1.393 11.324 0–23.0 1.368–1.411 3.866 0–7.9 1.335–1.395 7.226 0–16.3

1.395–1.446 2.009 0–4.2 — — — 1.395–1.447 4.204 0–8.4

1.447–1.484 12.910 0–26.1 1.422–1.477 4.912 0–10.6 1.456–1.490 0.515 0–1.3

1.486–1.540 0.447 0–2.1 1.477–1.537 84.21 0–170.4 1.491–1.564 3.670 0–7.9

1.544–1.59 3.333 0–6.9 1.540–1.605 1.163 0–2.7 1.566–1.624 0.560 0–2.2

— — — 1.609–1.667 3.656 0–10.0 1.627–1.686 3.342 0–7.2

— — — 1.674–1.753 2.013 0–5.0 1.690–1.762 3.582 0–10.8

— — — 1.756–1.805 0.708 0–2.5 — — —

Abbreviation: CI, 95% credible intervals.
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haplotypes in the graph nodes in bitwise notation rather than as
character arrays. A combination of such strategies can help to further
reduce the computational burden of full-likelihood inference.

WEB RESOURCES

InferRho program and binaries are freely available from http://
www.rannala.org.
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