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Abstract  DNA-based approaches to systematics have changed dramatically during the last two decades with the rise of DNA 

barcoding methods and newer multi-locus methods for species delimitation. During the last half-decade, partly driven by the new 

sequencing technologies, the focus has shifted to multi-locus sequence data and the identification of species within the frame-

work of the multi-species coalescent (MSC). In this paper, I discuss model-based Bayesian methods for species delimitation that 

have been developed in recent years using the MSC. Several approximate methods for species delimitation (and their limitations) 

are also discussed. Explicit species delimitation models have the advantage of clarifying more precisely what is being delimited 

and what assumptions we are making in doing so. Moreover, the methods can be very powerful when applied to large multi-locus 

datasets and thus take full advantage of data generated using today’s technologies [Current Zoology 61 (5): 846–853, 2015]. 
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DNA-based approaches to systematics have under-
gone a revolution during the last two decades. First, the 

rise of DNA barcoding initiatives during the late 1990s, 
aimed at using single-locus genetic sequences to identi-

fy and assign samples to species, generated large-scale 

taxonomy-oriented sequencing projects in several coun-
tries (Schindel and Miller, 2005; Hebert and Gregory, 

2005). This was followed by extensive debate about the 
feasibility of single-locus DNA barcoding (Moritz and 

Cicero, 2004; Hickerson et al., 2006). During the last 

half-decade, partly driven by the new sequencing tech-
nologies, the focus has shifted to multi-locus sequence 

data and the identification of species within the frame-
work of the multi-species coalescent (MSC) (Knowles 

and Carstens, 2007; Yang and Rannala, 2010). In this 
paper, I do not attempt to review the extensive literature 

on genetic delimitation of species but focus mainly on 

the model-based approaches that have been developed 
in recent years using the MSC. Explicit models have the 

advantage of clarifying more precisely what is being 
delimited and what assumptions we are making in doing 

so. Moreover, the methods can be very powerful when 
applied to large multi-locus datasets and take full ad-

vantage of today’s technologies. By focusing on model-  

based approaches the aim is to provide one possible 
path through the maze of methods proposed for species 

delimitation in recent years. Other paths exist but I will 
not explore them here. 

1  The Objective 

A fundamental difficulty facing biologists interested 

in the genetic delimitation of species is that in order to 
delimit species they must first be defined. Species defi-

nitions intermingle with species concepts and the lack 
of concensus in this field poses a serious dilemma for 

the “delimiters” (Sites and Marshall, 2003). If syste-

matists cannot agree on what defines a species how can 
geneticists possibly develop objective methods to iden-

tify one? Moreover, even if one were willing to adopt a 
particular species concept it is difficult to translate a 

verbal “concept” into a well-defined mathematical 
model. An obvious candidate for such a translation is 

the “Biological Species Concept” (BSC) – the require-

ment of reproductive incompatibility between species 
(Mayr, 1976). The BSC does not lead to an easily iden-

tifiable model for use in genetic analysis, however, un-
less the genes involved in reproductive isolation are 

known. For example, a pair of allopatric species might 
have been completely isolated for a million years, 

which would be readily evident from a multi-locus ge-

netic analysis, but genetic isolation alone does not prove 
that the species are incapable of interbreeding.  

One possible resolution to the ambiguity of genetic 
predictions derived from species concepts is to turn the 

problem on its head and instead ask whether characte-

ristic patterns of genetic divergence emerge when we 
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compare groups that systematists have recognized as 
different species, comparing these with patterns for 
groups labeled as subspecies, as populations, and so on. 
Despite some success with particular taxonomic groups 
(Hebert et al., 2004), such approaches have most often 
failed to generate useful “rules of thumb.”  For exam-
ple, the so-called 10x rule for interspecific versus in-
traspecific distances (Hebert et al., 2004) does not ap-
pear to be generally useful (Hickerson et al., 2006). Hey 
and Pinto (Hey and Pinho, 2012) applied an “empirical” 
delimitation approach to a range of groups and con-
cluded that few consistent patterns emerge when com-
paring populations versus species (and thus that species 
designations may be arbitrary).  

One problem with the empirical delimitation ap-
proach is that it presupposes that the traditional syste-
matics is correct (i.e., that existing species and popula-
tion boundaries provide a relevant guide); this may not 
be true in general. A second problem is that many em-
pirical delimitation studies have used population-level 
measures of differentiation that may not provide an ap-
propriate diagnostic. Measures of genetic differentiation 
based on allele (or genotype) frequencies, such as FST, 
can increase rapidly when severe population bottlenecks 
occur, founding events, etc. For example, if a popula-
tion initially has allele frequency 0.5 at a locus and a 
new population is founded by 2 randomly chosen dip-
loid individuals the new population is fixed for the al-
lele with probability (1/8). Such large variances among 
populations lead to large FST values. Thus, even recently 
isolated populations can show large levels of differen-
tiation under certain circumstances. On the other hand, 
consistently large populations accumulate frequency 
differences slowly and may show little differentiation 
even if completely isolated for hundreds of generations. 
These properties at least partially explain the frequent 
lack of agreement of differentiation measures such as 
FST with species (or population) status in empirical de-
limitation studies. Studies of average divergence for a 
single locus (Hebert et al., 2004) are prone to large va-
riance introduced by the random processes of coales-
cence and mutation accumulation (Ross et al., 2008). 

The focus of Bayesian species delimitation methods 
developed over the last decade has been on the use of 
multi-locus genetic data with the basic premise being 
that the groups we call species are genetically isolated 
on an evolutionary timescale. The boundaries between 
“evolutionary” or “mutational” versus “population ge-
netic” timescales of isolation are fairly well defined if 
we consider an explicit population genetic model. A 

"population genetic" timescale is defined here as below 
the level at which mutations accumulate and would be 
dominated by frequency differences due to genetic drift, 
selection, etc. Model-based methods are developed us-
ing a multi-species coalescent (MSC) framework (Takahata 
et al., 1995; Rannala and Yang, 2003) in which gene 
trees evolve within populations that may, or may not, be 
connected by migration. One tentatively defines as a 
species any population that is significantly supported as 
a distinct lineage in a species-tree analysis (see below). 
Simulation studies (Zhang et al., 2011) suggest the mi-
gration threshold for genetic isolation is about 1 indi-
vidual per 10 generations. This determines the level of 
gene flow below which model-based genetic delimita-
tion identifies putative species.  

One can also consider the time duration during which 
gene flow must be below the migration threshold in 
order for a species to be delimited. The rate of mutation 
for nuclear genes for a broad range of animals is on the 
order of 10-8 to 10-10 mutations per site per year. Given 
these rates, even with whole genome data it is difficult 
to obtain statistical support for species divergences less 
than about 10-6 in units of expected DNA substitutions 
per site per year. Thus, a bound for the divergence time 
of an incipient species that can be identified on a spe-
cies tree is about 1,000 years (10-9 × 1,000 years). The 
basic properties of a group that delimit it as a species 
using model-based delimitation methods are then that it 
has received less than about 1 migrant per 10 genera-
tions for at least 1,000 years. In practice, the threshold 
for divergence time based on the available loci is proba-
bly at least one or two orders of magnitude greater than 
this – for example, a dataset with 50 loci, each 1 kb in 
length, would not allow a divergence event to be de-
tected if it occurred less than about 10,000 years ago 
(50 × 10,000 × 10-9 = 5 × 10-4). Although (Yang and 
Rannala, 2010.) have previously associated the model 
underlying Bayesian species delimitation methods with 
the Biological Species Concept, reproductive isolation 
is a sufficient condition for identification of species un-
der the model but not a necessary one (the delimited 
species may be allopatric). It is more accurate to con-
sider an operational definition of the method as pre-
sented above. However, the above description should 
only be interpreted as a rough guideline – more analysis 
is needed to determine precise bounds on the conditions 
for species delimitation using the MSC framework.  

2  The Model 

At this point we have an outline of a “species defini-
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tion” corresponding to the basic genetic model de-
scribed above, we now consider that model in more 
detail. Genetic isolation on an evolutionary time-scale is 
the property that allows species to be recognized using 
molecular genetic delimitation techniques. Under such a 
paradigm, one can visualize species genetic histories as 
an assemblage of horizontal and vertical pipes (Fig. 1). 
Each pipe is a conduit for gene lineages; the horizontal 
pipes represent an admixture of contemporaneous spe-
cies and the vertical pipes represent the continuity of a 
species through time. If a speciation event gives rise to 
two descents then an upward T-fitting occurs, while if a 
hybridization of two species produces a single descen-
dent species a downward T occurs (Fig. 1). One can 
take the analogy slightly further and imagine that the 
cross-sectional area of the vertical pipes represents ef-
fective population sizes and that of the horizontal pipes 
represents the flow of migrants. Here the analogy be-
comes strained because gene flow may be asymmetrical 
between populations, effective population sizes may 
vary across the genome and through time, and so on.  
Fortunately, the precise details of migration and popula-
tion size change do not need to be known to identify 
species and represent their history. As noted above, 
there is a threshold effect to gene flow in terms of its 
impact on the future destiny of a species. If less that 
about 1 individual per 10 generations is exchanged be-
tween two species they will persist as independently 
evolving units while if greater numbers of individuals 
are exchanged they will behave as a single interbreeding  

 

 
 

Fig. 1  Representation of the independent evolutionary 
units in a multi-species coalescent tree of three contempo-
rary species (A, B, and C-D) as a series of “pipes”  
There are three ancestral speciation events and one ancestral hybridi-
zation event. The ancestral species are A-B, A-B-C, C, D, and 
A-B-C-D. An upward facing pipe “T” fitting represents a hybridiza-
tion event and a downward facing T-fitting represents a speciation 
event. 

species. Thus, we can interpret a horizontal pipe as in-
dicating sufficient gene flow to create a single species 
(from a genetic perspective). Of course, we could allow 
more than 3 pipes to connect at a speciation or hybridi-
zation event, etc, but this is unnecessary since we can 
allow arbitrarily short pipes connecting events. A spe-
cies graph can be visualized as the outcome of this 
plumbing exercise (Fig. 1). 

Here, we will ignore the horizontal pipes and assume 
that a binary tree (only vertical pipes and upward T-   
fittings) can be used to represent the relationships among 
species through time. Most parametric species delimita-
tion methods are based on this model, which is often 
adequate. It is feasible to expand the model to include 
hybrid species but this scenario has not been imple-
mented in current approaches. The binary tree of rela-
tionships among species is the so-called “species tree.” 
A gene tree, on the other hand, is a binary tree repre-
senting the history of a region of a genome sampled 
from one or more contemporary individuals. The split-
ting points in the gene tree represent the coalescence of 
lineages to a common ancestor. Each lineage of a gene 
tree is associated with a particular (contemporary or 
ancestral) species at any point in the history. At a par-
ticular instant in time, gene tree lineages that are found 
in different species cannot coalesce to a common an-
cestor – the species tree constrains the possible coales-
cence events among lineages in each gene tree (Rannala 
and Yang, 2003).  

The probability distribution of gene trees under a 
MSC model is completely determined once the species 
tree topology and branch lengths, and the ancestral popu-
lation sizes, have been specified (Rannala and Yang, 
2003). The contemporary and ancestral effective popu-
lation sizes are normally scaled in units of expected 
substitutions and represented by the commonly used 
population genetic parameter θ = 4Nμ, where N is the 
effective population size and μ is the mutation rate per 
site per generation. The expected number of substitu-
tions per site between a randomly chosen pair of se-
quences from a population is equal to θ under the neu-
tral model. The MSC model is the theoretical basis for 
both Bayesian and likelihood inference methods of spe-
cies delimitation. However, in a Bayesian framework 
one can think of the MSC as a prior on gene trees; the 
posterior density of gene trees may be quite different 
from the prior – it is a mistake to assume that if the neu-
tral coalescent model is incorrect the delimitation me-
thod will not work. The Bayesian method could be ro-
bust to the prior and perform well even in cases where 
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strong directional selection is operating on some genes 
(Edwards, 2009) – further simulation studies are needed 
to determine the robustness of Bayesian species delimi-
tation to violations of the neutral coalescent model. 
With many loci, as in whole-genome datasets it appears 
likely that robustness can be achieved. By collapsing, or 
expanding nodes on the species tree one can represent 
different species delimitation models and by modifying 
branch lengths or topology one can represent different 
phylogenetic relationships among the delimited species. 

3  The Methods 

Several authors have classified species delimitation 
methods as either “discovery” or “validation” proce-
dures (see O’meara, 2010). “Discovery” methods are 
typically “assignment” methods, aiming to identify ge-
netic substructure in populations using genotype fre-
quencies. One property of assignment methods (relevant 
to species delimitation) is that with sufficient numbers 
of loci they will detect very subtle differences between 
populations – even ones that have experienced recent or 
ongoing gene flow and would not normally qualify as 
species. This explains the need for a subsequent “vali-
dation” of the putative species using another method 
(Rittmeyer and Austin, 2012). It is arguably more accu-
rate to describe such methods as population substructure 
detection methods rather than species discovery me-
thods because they will often detect structure at levels 
well below the species. Moreover, in some cases, the 
population substructure is quite obvious (the potential 
species may be allopatric for example) and an explicit 
“discovery” step may not be needed. Finally, one can 
use alternative discovery approaches such as partition-
ing populations into subsets and iteratively applying 
“validation” methods without a prior discovery step. As 
the computational efficiency of validation methods in-
creases it may become possible to increase the number 
of populations used in a “validation” analysis, or even 
treat each diploid genome as a potential species, thus 
eliminating the need for a discovery step. For these 
reasons, we focus here exclusively on the class of me-
thods described as species validation methods – we re-
fer to these methods simply as species delimitation me-
thods. 

Essentially all model-based species delimitation me-
thods assume the existence of a species tree with gene 
trees determined by the MSC as described in the pre-
vious section. However, most methods simplify the in-
ference procedure in one or more ways. The methods 
can be broadly classified into two types: (1) Data-   

limited methods that can only analyze particular forms 
of genetic data (e.g., a single non-recombining locus, or 
unlinked single nucleotide polymorphisms [SNPs]); and 
(2) Pseudo-data methods that make inferences based on 
inferred gene trees that are treated as if they were ob-
servations. All of these approaches reduce the computa-
tional expense and/or analytical complexity of the infe-
rence problem but at the cost of potentially increased 
bias and/or reduced power and accuracy. Fully Bayesian 
methods have been developed but require a greater 
computational investment. Here, we will begin by de-
scribing the general Bayesian inference framework and 
then outline the various alternative methods. 
3.1  Bayesian species delimitation  

The delimitation model, M, includes both the species 
delimitation and the phylogeny. If G is the set of gene 
trees for the sampled loci, D is the multi-locus sequence 
data, and Ω is the set of priors and model parameters 
(the dimension of Ω is variable), the posterior probabil-
ity of M is 
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where β defines a set of fixed prior (or hyper-prior) pa-

rameters. The program BPP (Yang and Rannala, 2014) 
uses a reversible-jump Markov chain Monte Carlo me-

thod to numerically evaluate this probability. The 

*Beast module Dissect (Jones et al., 2014) uses a Dirac 
delta function to mimic the effect of collapsing nodes on 

the species tree, also with the aim of generating the po-
sterior probabilities of delimitation models. The above 

formulation is entirely general, although current Baye-
sian implementations assume that the genetic loci are 

unlinked and that there is no intra-locus recombination. 

We now consider several alternative delimitation me-
thods that aim to evaluate these probabilities by differ-

rent means, or approximations.  

3.2  Data-limited methods 
The first class of alternative methods that we consid-

er are those restricted to particular data types. Leache et 
al. (Leaché et al., 2014) used a Bayes Factor (BF) ap-
proach adapting the SNAPP program (Bryant et al., 
2012) for phylogenetic inference using SNP data to 
calculate marginal likelihoods for use in comparing BFs 
of particular delimitation models. Strengths of this ap-
proach include the fact that SNAPP can analytically 
integrate over gene trees; this might offer an advantage 
over methods that numerically integrate over gene trees 
using MCMC in some circumstances. However, the cur-
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rent implementation of (Leaché et al., 2014) relies on an 
MCMC path sampling framework to estimate marginal  
likelihoods which can be computationally intensive. 

Two limitations of the method are: (1) it may only use 
unlinked SNP loci and each SNP contains relatively 

little information about the underlying gene tree at a 
locus -- the branch lengths are particular poorly speci-

fied; (2) it requires that the models for comparison us-

ing BFs be specified a priori by the user as it is not 
practical to enumerate all possible model BFs for more 

than a small number of populations. This second prob-
lem applies to other recent BF-based methods (Grummer 

et al., 2013) as well. Another method that is data-limited 
is the Generalized Mixed Yule Coalescent (GMYC) 

model (Fujisawa and Barraclough, 2013) which uses a 

prior on the gene tree that assumes a mixture of a Yule 
branching process for the species tree and a coalescent 

model within populations – this cannot be easily ex-
tended to multiple loci. 

3.3  Pseudo-data methods 
Another recently proposed class of species delimita-

tion methods attempt to simplify the analysis by treating 
point estimates of the gene trees as if they were ob-

served data, with the MSC prior then playing the role of 
a likelihood function. The program spedeSTEM (Ence 

and Carstens, 2011) applies this approach, using Akaike 
Information Criterion (AIC) scores(Akaike, 1974) to 

choose among different delimitation models, with like-

lihoods calculated using maximum likelihood estimates 
of the gene trees. An advantage of this strategy is that it 

is relatively simple to estimate gene trees and maximize 
the likelihood when not integrating over gene trees. 

There are two clear disadvantages however: (1) the me-
thod does not correctly account for the uncertainty of 

gene tree topologies and branch lengths; (2) the AIC 

score is based on an asymptotic approximation and may 
perform poorly in practice as a model choice criterion. 

The AIC approach is particularly problematic in this 
case because the θ parameters are assumed equal for all 

populations in the spedeSTEM model and are user-    

specified, rather than estimated from the data. The AIC 
approximation is derived based on an assumption that 

the likelihoods are calculated using maximum likeli-
hood estimates of the unknown parameters. 

4  Concordance among Delimitation 
Methods: A Measure of Accuracy? 

In a recent paper entitled “How to fail at species de-
limitation” Carsten et al. (2013) noted that the “poten-

tial parameter space relevant to species delimitation is 
larger and far more complex than that considered by 
even the most heavily parameterized of existing me-
thods” and that a “naïve response to the above conun-
drum is to identify a single method that is demonstrably 
accurate in some simulation study and apply it alone to 
the data.” The authors suggest that simulation studies 
designed to identify such methods have shortcomings 
because “no simulation study has included every poten-
tially useful method” and “results from simulation stu-
dies are conditional on the specific attributes of the si-
mulated data used in such studies.” They conclude with 
the recommendation that many delimitation methods be 
applied and delimitations accepted that are common to 
all (or most) of the methods (as was done by Satler et al., 
2013). This sounds like reasonable advice. However, 
following this advice will generally lead to the outcome 
that few or no species will be delimited. In fact, the 
more studiously a researcher applies this advice -- in-
cluding additional delimitation methods and requiring 
agreement among them -- the greater is the likelihood 
that she will “fail at species delimitation.”  

Carsten et al’s (2013) comment regarding the com-
plexity of the parameter space is, of course, true – reali-
ty is always more complex than any particular statistical 
model. However, satisfactory statistical tests, or esti-
mators, do not normally result from simply maximizing 
the number of parameters (the “biological realism”) of 
the model. In virtually every situation, some aspects of 
the problem (additional model parameters) have an im-
portant influence on estimates of the parameters of in-
terest, or the result of a hypothesis test, and others do 
not. Often the best approach is to endeavor to identify 
the model components that have an important effect on 
inferences. It is usually straightforward to examine the 
effect of including or excluding various model parame-
ters, as well as the effects of violations of model as-
sumptions, either by analytical analysis or by simula-
tions. In the case of species delimitation, the current 
situation is even more straightforward since essentially 
all the existing parametric methods are based on the 
same likelihood function – the main differences among 
the methods are their use of different short-cuts, such as 
assuming that gene trees are known without error 
(which discards information and can introduce bias), or 
a reduced data structure (such as unlinked SNPs rather 
than sequence data). Short-cut methods are employed 
for analytical or computational expedience – they do not 
represent alternative “models”. Clearly the statistical 
performance of such methods cannot exceed that of the 
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full-likelihood or Bayesian method, although the com-
putations may be faster and issues such as MCMC con-
vergence of less or no concern. This is very different 
from the situation where alternative models are em-
ployed in different methods and it is not clear which one 
provides better results.  

Carstens at al. (2013) suggest that it is naïve to at-
tempt to choose an optimal method for use in inference 
and that a cautious analyst should instead apply many of 
the available methods and look for agreement between 
them. This idea, a sort of “statistical democracy”, has 
appeared before in the phylogenetics literature. Kim 
(1993), for example, argued that if UPGMA clustering, 
maximum parsimony, and neighbor-joining all agreed 
on the same tree this indicated its reliability (he pro-
posed a reliability index for this purpose). The problem 
with this approach is that several methods with poor 
statistical properties can nonetheless make similar infe-
rences because their underlying algorithms are similar – 
their agreement does not then increase the likelihood 
that a result is correct. Moreover, if one of the estima-
tors is superior in some situation and generates a very 
different result it is discounted -- a “tyranny of the ma-
jority” arises. Statistical democracy also puts no con-
straints on the permissible tests, or estimators. Clearly 
there are many more ways to construct bad statistical 
tests, or estimators, than there are to construct good 
ones and it follows that the more tests we include in the 
composite test the worse the tests will be on average.  

To illustrate the effect of combining tests we consider 
a simple example. Imagine a “good” test T1 that has 
power 1 – β and type I error rate α and a “bad” test T2 

with a p-value that is uniformly distributed on (0,1) ir-
respective of the data. Both T1 and T2 will have type I 
error rate α. However, test T2 also has power α. Now 
consider a more “conservative” composite test, 

T3 = T1∩T2 

Namely, we reject the null hypothesis only in the 
case that both T1 and T2 reject. The test is indeed con-
servative; the type I error rate is now α2. However, the 
power of T3 is (1 ‒ β)α. For example, if α = 0.01 and β = 
0.2 test T1 has type I error rate 0.01 and power 0.8. Test 
T2 has type I error rate 0.01 and power 0.01. The com-
bined test T3 has type I error rate 0.0001 and power 
0.008. This example may seem contrived since the 
second test returns a random p-value. However, it illu-
strates two things: first, if the sampling distributions of 
the two test statistics are not identical the type I error 
rate of the composite test is less than any of the compo-
nent tests (it is more conservative). Second, the power 

of the composite test is less than the power of the least 
powerful component test – in other words there is a 
large penalty for adding a poor test. Furthermore, the 
more component tests that we add the less powerful the 
composite test becomes and if the component tests have 
very similar sampling distributions the sampling distri-
bution of the composite test will be similar to that of 
every component. In that case, the composite test offers 
no particular benefit – one would do just as well using 
any one of the components.  

To summarize, if one or more of the tests are bad the 
composite test will incur a large reduction in power with 
the only benefit being a decrease in type I error. If all 
the tests are good the composite test offers essentially 
no benefit. In general, a better strategy is to attempt to 
eliminate poor tests from consideration using simula-
tions (or analysis) to evaluate them and if one is con-
cerned about type I error to use a more stringent criteria 
for significance when applying the best test. 

If we apply “statistical meritocracy” as our criterion 
and search for a best test we require a means for com-
paring the statistical performance of the available tests. 
Given the complex model we deal with in species deli-
mitation this will often involve simulation studies. 
Carstens et al. (2013) observe that one can’t compare 
the performance of all possible methods nor can one 
evaluate the performance of any given method for all 
possible combinations of parameters and conclude that 
many (or all) available methods should be used since 
none can be excluded apriori. As noted above, this ap-
proach carries large penalties in terms of power and 
offers no clear statistical advantage. The basis for this 
recommendation is also not well justified. First, we do 
not need to evaluate all the available methods using 
simulations because many of them, pseudo-data me-
thods for example, or methods based on summary sta-
tistics rather than the full likelihood, cannot perform 
better than the full-likelihood or Bayesian method so the 
question comes down to how much worse they are. If 
we are not concerned about computational expense and 
just want to find the best estimator we can safely ex-
clude them. Second, we do not need to examine the en-
tire parameter space when comparing a given set of 
methods via simulation because we can often get a good 
indication of the relative performance of methods by 
simulating over a subset of the space. If the state space 
for simulations is reasonably large and one method out-
performs another over all the simulation conditions, for 
example, it is unlikely that the opposite will occur in the 
un-sampled region of parameter space. Moreover, it is 
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often feasible to randomly sample the state space to 
obtain combinations of parameters for the simulation – 
this is essentially like making inferences about a popu-
lation from a sample rather than a complete census. If 
the state-space sampling is carefully implemented this 
can be as informative as an exhaustive analysis would be.  

In the above discussion we have advocated the statis-
tical meritocracy approach (exclusive use of the best 
method) based solely on the statistical properties of the 
methods. However, there is also the practical concern 
that all computer programs contain implementation er-
rors, numerical instabilities, and other algorithmic pro-
blems that can cause erroneous inferences (this is a fail-
ure of the implementation not the method). For this rea-
son, we advocate the use of two or more algorithmically 
similar programs (i.e., based on the same or very similar 
statistical models) when possible. A bug in one of the 
programs can then be detected as a discrepancy between 
the results obtained using each program. Moreover, with 
MCMC programs one should also run each individual 
program multiple times with the same priors but differ-
rent random number generator seeds to examine wheth-
er the results are consistent for a given program. Any 
discrepancies observed between the results obtained 
from either within or between program runs should be 
resolved (or otherwise explained) before publishing the 
results if at all possible.  

5  How to Succeed at Species  
Delimitation 

With a new version of BPP now available that jointly 
infers the phylogeny and delimitation (Yang and 
Rannala, 2014) one of the major concerns about Baye-
sian delimitation -- the effect of errors in the guide tree 
(Leaché and Fujita, 2010; Olave et al., 2013; Zhang et 
al., 2014) -- has been resolved. One remaining concern 
for the Bayesian approach is the sensitivity of delimita-
tion outcomes to the priors on the root age τ and the 
population genetic parameter θ. Leache and Fujita 
(Leaché and Fujita, 2010) suggested that a large prior 
mean on θ and a small prior mean on τ are conservative 
(reduce the probability of splitting). However, this does 
not seem to be true in general; although a larger mean 
for the prior on θ tends to decrease the delimitation 
probability the effect of changing the prior on τ is less 
predictable. Leaché and Fujita (2010) examined the 
effect of changing the prior means on τ and θ by two 
orders of magnitude from (0.001 to 0.1). This is often 
too extreme – a better strategy is to set the means of 
both priors to reasonable values (same order of magni-

tude) based on a preliminary analysis and then to vary 
the prior means above and below this value within one 
order of magnitude of the preliminary estimates. The 
shape parameter α should be between 1 and 2 so that the 
standard deviation is roughly proportional to the mean. 
It is well known that by choosing a sufficiently extreme 
prior one can always influence the posterior distribution 
for finite datasets. Thus, it is important to allow only 
biologically reasonable values for the priors (often 
within an order of magnitude of the value suggested by 
the data). 

We conclude with several recommendations for suc-
cessful species delimitation: (1) use multi-locus se-
quence data; (2) use explicit model based approaches 
and be aware of the assumptions; (3) if using Bayesian 
methods examine the effect of the priors but do not use 
priors that are too extreme. We advocate the use of 
model-based methods for several reasons. First, many 
heuristic methods that are not derived based on an ex-
plicit model may make implicit assumptions; as the old 
saying goes “Better the Devil you know than the Devil 
you don “t”. Second, a model allows one to understand 
what is being inferred which is preferable to the use of a 
black box method with unknown properties. Finally, in 
a parametric framework likelihood and Bayesian based 
inference approaches lead to estimators and hypothesis 
tests with good statistical properties, especially for large 
samples. Model-based species delimitation is still in the 
early stages of development but several current pro-
grams already allow analyses of relatively large mul-
ti-locus datasets (hundreds of loci and a dozen or more 
populations). The availability of whole-genome sequen-
ce data offers many computational challenges that shou-
ld drive new developments in the field for some time to 
come. 
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