
1
Quantitative Genetics of Human Traits

1.1 Anthropometric variation

During the late 1800s, a criminologist working in France, Alphonse
Bertillon, and others developed a sophisticated collection of approaches,
collectively known as anthropometrics, for measuring physical (mor-
phological) variation among individuals. Most of the traits that Bertillon
considered were what we now call continuous traits, based on mea-
surements (e.g., height, weight, etc) as opposed to discrete traits which
are based on counts of unambiguous observations (e.g., eye color, etc).
The British scientist Francis Galton analysed the patterns of variation
of continuous traits, such as height, among relatives (parents and chil-
dren) in an attempt to discover general rules for the hereditary trans-
mission of trait values from parents to offspring. Part of Galton’s moti-
vation for this research was his belief in eugenics – essentially a move-
ment aimed at improving human races by selective breeding (encour-
aging “desirable” individuals to reproduce with tax incentives, etc) and
discouraging “undesirables” from reproducing by sterilization, and other
measures. Heritability of a trait is essential for eugenics to be effec-
tive in altering its frequency in populations. Eugenics has now been
largely discredited – the greatest abuse of eugenics was carried out by
the Nazi’s who used it to justify the murder of millions.

Although Galton initiated such studies, it was not until after the re-
discovery of Mendel’s laws in 1900 that the British mathematician and
biologist R.A. Fisher developed the first credible explanation for the
patterns of inheritance of continuous traits in humans. Fisher’s theory
can be used to predict correlations of traits among relatives and played
a dominant role in studies of human disease genetics and improve-
ments in animal breeding methods during the first half of the twentieth
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century. This branch of populations genetics, which predicts patterns
of trait variation among relatives without knowing the specific under-
lying genes influencing the trait is known as “quantitative genetics.”
Quantitative genetics still plays an important role in studies of so-called
complex genetic traits and diseases (those that are caused by the com-
bied effects of many genes and environment). Many common human
diseases such as type II diabetes are complex genetic diseases. Virtually
all continuously varying human traits, such as height and weight, are
complex traits.

1.2 Fisher’s model

Let m be the measure of a continuous trait (phenotype) such as height
in humans. Assume that L genes (each with two alleles) influence the
trait. Each gene (locus) is assumed to have a small effect (of similar
magnitude) with each copy of an allele D at a locus increasing m by an
amount +a/2 and each copy of allele d decreasing m by−a/2. The trait
value of an individual is

m =
L

∑
i=1

xi + ε,

where ε is a random effect due to environment (assumed to have a
mean of zero and variance σ2

ε ) and

xi =






+a if DD
0 if Dd
−a if dd.

If Pi, Qi and Ri are the population frequencies of individuals with geno-
types DD, Dd and dd at locus i, and the loci are not linked so they seg-
regate independently, the average value of the trait in the population
is

m =
L

∑
i=1

(aPi − aRi) = a
L

∑
i=1

(Pi − Ri),

and the genetic variance in the population is

σ2
G = a2

L

∑
i=1

[Pi(1− Pi) + Ri(1 + 2Pi − Ri)].
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Figure 1.1 Frequency distribution of simulated phenotypic values
(histogram). Probability plot for a normal distribution with mean 0
and variance 17 is the overlaid smooth line.

The total population variance of the trait is the sum of variances due to
genetic factors and environments,

σ2
T = σ2

G + σ2
ε .

The heritability of the trait is the proportion of total phenotypic vari-
ance attributed to genetic variation,

H =
σ2

G
σ2

G + σ2
ε

.

For example, suppose that L = 2, a = 2, σ2
ε = 1, P1 = 0.2, R1 = 0.3,

and P2 = 0.6, R2 = 0.05, then

m = 2× [(0.2− 0.3) + (0.6− 0.05)] = 0.9,

and

σG = 22[0.2(1− 0.2) + 0.3(1 + 2(0.2)− 0.3)]
+ 22[0.6(1− 0.6) + 0.05(1 + 2(0.6)− 0.05)]
= 3.35.
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Thus,

σ2
T = 3.35 + 1 = 4.45,

and

H =
3.35

3.35 + 1
= 0.77.

As the number of loci influencing a trait increases, the distribution of
the trait in a population approaches a normal distribution with a mean
and variance as given above. The frequency distribution for a trait in a
population of N = 10, 000 individuals, generated by computer simula-
tion under the model described above, is shown in Figure 1.1. In this
case, a = 2, and Pi = Ri = 0.2 for all i = 1, 2, . . . , 10. The variance
predicted by the above equations is σ2

T = 17 and the predicted mean
is m = 0. The mean and variance calculated for the simulated data are
-0.0711 and 17.08, respectively.

1.3 Trait correlations between relatives

The simple model described above can be used to predict the expected
degree of similarity between relatives of different degree. Observations
on trait values among relatives (such as were collected by Galton, for
example) can then potentially be used to predict the degree of heritabil-
ity of a trait. To do so, we need a statistic for summarizing the similar-
ities of traits between individuals with a given familial relationship. A
useful measure of the association between a pair of variables (xi, yi) is
the correlation coefficient, defined as

ρ =

[(
1
n ∑n

i=1 xiyi

)
− x y

] ( n
n−1

)

√
σ2

x σ2
y

,

where,

x =
1
n

n

∑
i=1

xi, y =
1
n

n

∑
i=1

yi,

and,

σ2
x =

1
n− 1

n

∑
i=1

(xi − x)2, σ2
y =

1
n− 1

n

∑
i=1

(yi − y)2,

are the means and variances of the variables x and y, respectively. As
an example, suppose that we measure height in 5 pairs of fathers and
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Index Height (Father, x) Height (Son, y)
1 72 69
2 65 67
3 69 70
4 58 63
5 77 65

Table 1.1 Comparative height (in inches) for a sample of fathers and sons.

sons. The measurements (in inches) are shown in Table 1.1. The means
of fathers and sons are,

x =
1
5
(72 + 65 + 69 + 58 + 77) = 68.2,

y =
1
5
(69 + 67 + 70 + 63 + 65) = 66.8,

the variances are,

σ2
x =

1
4
[((72− 68.2)2 + (65− 68.2)2 +

(69− 68.2)2 + (58− 68.2)2 + (77− 68.2)2] = 51.7

σ2
y =

1
4
[(69− 66.8)2 + (67− 66.8)2 +

(70− 66.8)2 + (63− 66.8)2 + (65− 66.8)2] = 8.2,

and the covariance is

1
n

n

∑
i=1

xiyi = (1/5)[72(69) + 65(67) +

69(70) + 58(63) + 77(65)]
= 4562.4. (1.1)

The correlation coefficient is therefore,

ρ =
(4562.4− 68.2× 66.8)(5/4)√

51.7× 8.2
= 0.403

Fisher showed the expected correlation between fathers and sons to be

ρFS =
1
2

(
σG

σG + σε

)
=

1
2

H.

Therefore, a rough prediction of the heritability of a trait is

H = 2ρFS. (1.2)
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For the example given above this would be

H = 2(0.403) = 0.806.

A sample of 5 sons and fathers is far too few to get reliable estimates of
H and this example is for illustration purposes only.

1.4 Galton’s mistake: regression to the mean

In an influential paper published in the scientific journal Nature in 1886,
Galton compared the average height of the children in a family against
the average (midpoint) height of their parents. His expectation was that
if height is highly heritable then taller than average parents should
produce taller than average children, and so on. In making these com-
parisons, Galton notice an interesting phenomenon that he called ”re-
gression toward mediocrity” [now referred to as regression toward the
mean (population average)]. If the difference between average heights
of children versus parents is analyzed one finds that parents with more
extreme heights (either short or tall) tend to have children that are more
discordant from the heights of their parents and closer in height to the
population mean (e.g., taller if parents are short or shorter if parents
are tall). Galton was very excited by this result and developed a com-
plex genetic explanation based on the idea that a child’s height is deter-
mined by a mixture of it’s parents heights and the heights of many past
ancestors whose average height tends to be more similar to the pop-
ulation mean height. We now know that this explanation is incorrect
and that regression toward the mean is a purely statistical phenomenon
that has nothing to do with genetics. To illustrate regression toward the
mean consider a simple simulation. Suppose that two sets of 100 ran-
dom variables are simulated from a normal distribution with a mean of
10 and a standard deviation of 5. We assume that height is not inherited
and therefore can treat the first 100 variables as representing the aver-
age heights of parents and the second 100 variables as representing the
average heights of children; both sets of heights will be independent
normally distributed random variables. Panel 1 of Figure 1.2 shows the
relationship between the height of each pair of parents P and the av-
erage height of their children C. The plot of the two variables creates a
random cloud of points with no apparent association between heights.
If we instead plot the difference ∆ = P− C between the average height
of the parents and the average height of the children againt P (panel 2
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Figure 1.2 Frequency distribution of simulated phenotypic values
(histogram). Probability plot for a normal distribution with mean 0
and variance 17 is the overlaid smooth line.

of Figure 1.2), a clear pattern emerges showing a greater deviation of
heights for children born to either very tall or short parents – this is the
phenomenon of regression to the mean observed by Galton. The simple
explanation is that if we choose an extreme value of a random variable
and compare it with a random value that is not chosen based on its
value the deviation between the two values will be greater on average
than the deviation one would expect to see between two variables nei-
ther of which is chosen to be extreme.
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The First Human Genetic Markers:

ABO Blood Groups

2.1 Introduction

The ABO blood groups were first discovered by Karl Landsteiner in
1900 (he recieved the 1930 Nobel Prize for this work). Landsteiner iden-
tified 3 serotypes A, B and O. A fourth serotype AB was subsequently
identified by Decastrello and Sturli in 1902. The serology assay mixes
either A or B blood group antigens with a blood sample of unknown
type and observes whether an immune cross-reaction, indicated by ag-
glutination (clumping of cells), occurs. A cross-reaction occurs because
an antigen (A or B) is present that is recognized as foreign because an
individual that is a source of one of the blood samples has a blood type
that does not include that antigen. If agglutination occurs with addition
of both A and B antigens the sample type is O. If agglutination occurs
with neither A nor B it is AB, while if it occurs only with A or only with
B it is B, or A, respectively.

The blood group assay determines the phenotype of an individual
but not the genotype (particular combination of alleles that determine

Allele IA IB i

IA IA IA (A) IA IB (AB) IAi (A)
IB IA IB (AB) IB IB (B) IBi (B)
i IAi (A) IBi (B) ii (O)

Table 2.1 Possible combinations of IA, IB and i alleles of the ABO blood
group and resultant blood group phenotype (in parentheses).
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Allele IA IB i

IA fAA = p2
A fAB = 2pA pB fAi = 2pA(1− pA − pB)

IB fBB = p2
B fBi = 2pB(1− pA − pB)

i fii = (1− pA − pB)2

Table 2.2 Expected population frequencies of ABO genotypes as a function of
population allele frequencies under Hardy-Weinberg equilibrium.

blood type). In 1924 Felix Bernstein mathematically derived the rela-
tionship between alleles and genotypes at the ABO locus. These rela-
tionships are shown in Table 2.1. The IA and IB alleles are dominant to
i but are co-dominant to one another. Thus, an individual with blood
group A could have either of the genotypes IAi or IA IA, whereas an in-
dividual with blood type O must have genotype ii, an individual with
blood group AB must have genotype IA IB and so on. If the population
frequencies of the ABO blood group alleles are known, it is possible to
predict the expected genotype frequencies. This relationship between
allele and genotype frequencies under random mating is referred to as
Hardy-Weinberg equilibrium (HWE). Most genes are in HWE in hu-
man populations. If we define pA, pB and pi = 1− pA − pB to be the
relative population frequencies of alleles IA, IB and i, respectively, the
expected genotype frequencies under HWE are as given in Table 2.2. To
obtain the expected frequency of phenotypes involving combinations
of recessive and dominant alleles we must sum the genotype frequen-
cies. For example, the expected frequency, fA of blood group phenotype
A (which can result from either IA IA or IAi) we take the sum,

fA = fAA + fAi

= p2
A + 2pA(1− pA − pB)

= 2pA(1− pA/2− pB).

It is clear from table 2.2 that the population frequency of allele i can be
inferred directly from the frequency of the type O blood group as

pi ≈
√

fi,

because the relationship between fi and fii is unambiguous. However,
it is not obvious how to infer population allele frequencies for A and
B given phenotype frequencies fA and fB. A very general solution to
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this problem (any number of alleles, with any pattern of co-dominance)
was solved by C.A.B Smith in 1955 using a procedure now referred to
as the expectation-maximization (EM) algorithm. Similar methods have
been used to infer haplotype phase from genotype data (a problem we
consider later in the course).

Without going into statistical details, we describe here how the EM
algorithm can be applied to infer population allele frequencies (pA, pB
and pi) using population blood group phenotypes from a random sam-
ple of individuals (A, B, AB and O). This is a truly magical algorithm.
Let nAB, nii, nA and nB be the observed sample counts of phenotypes
AB, O, A and B, respectively. We choose arbitrary initial values for the
unobserved counts n̂AA, n̂Ai, n̂BB, and n̂Bi of genotypes IA IA, IAi, IB IB

and IBi, respectively. The “maximization” step of the algorithm esti-
mates the allele frequencies using the current counts by the so-called
“maximum-likelihood” method. The maximum likelihood estimators
of allele frequency are

p̂A =
2n̂AA + n̂Ai + nAB

2n
,

p̂B =
2n̂BB + n̂Bi + nAB

2n
,

p̂i =
2nii + n̂Ai + n̂Bi

2n
,

where n = nAB + nii + nA + nB is the total number of individuals sam-
pled. The “expectation” step uses the current estimates of allele fre-
quencies to predict the expected counts for the unobserved genotypes
(assuming HWE),

n̂AA = nA

(
p̂2

A
p̂2

A + 2p̂A p̂i

)
,

n̂Ai = nA

(
2p̂A p̂i

p̂2
A + 2p̂A p̂i

)
,

n̂BB = nB

(
p̂2

B
p̂2

B + 2p̂B p̂i

)
,

n̂Bi = nB

(
2p̂B p̂i

p̂2
B + 2p̂B p̂i

)
,

We then return to the maximization step and predict new estimates of
allele frequencies using our updated predictions of genotype counts,
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Group O Group A Group B Group AB

Observed 4,578 4,219 890 313
Predicted 4586.8 4209.8 879.7 323.7

Table 2.3 Observed and predicted blood group frequencies in a sample of
10,000 Londoners. Predictions are based on allele frequencies inferred using

the EM algorithm and assuming Hardy-Weinberg equilibrium.

then predict new genotype counts given our updated allele frequency
estimates, and so on, until the allele frequency estimates stabilize.

To illustrate the EM algorithm we apply it to a dataset from a 1953
paper by Aird et al. that examines blood group frequencies in a sample
of 10,000 people from London. The data are shown in the first row of
Table 2.3. As our initial values for the unobserved counts we take

n̂AA = 100,
n̂BB = 100,
n̂Ai = nA − 100 = 4219− 100 = 4119,
n̂Bi = nB − 100 = 890− 100 = 790.

Note that although these starting values are arbitrarily chosen, they
must satisfy the constraints nA = nAA + nAi and nB = nBB + nBi oth-
erwise our predicted counts will not fit the phenotype counts for the
observed data (nA and nB). Next, we apply the maximization step to
predict the allele frequencies,

p̂A =
2× 100 + 4119 + 313

2× 10000
= 0.2316

p̂B =
2× 100 + 790 + 313

2× 10000
= 0.06515

p̂i =
2× 4578 + 4119 + 790

2× 10000
= 0.70325

Next we generate new predictions for the unobserved genotype counts
using our current allele frequency estimates,

n̂AA = 4219
(

(0.2316)2

(0.2316)2 + 2× 0.2316× 0.70325

)
= 596.4962,

n̂Ai = 4219
(

2× 0.2316× 0.70325
(0.2316)2 + 2× 0.2316× 0.70325

)
= 3622.504,
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It pA pB pi nAA nAi nBB nBi

1 0.2316000 0.06515000 0.7032500 596.4962 3622.504 39.40033 850.5997
2 0.2564248 0.06212002 0.6814552 668.0867 3550.913 38.79694 851.2031
3 0.2600043 0.06208985 0.6779058 678.8881 3540.112 38.97306 851.0269
4 0.2605444 0.06209865 0.6773569 680.5332 3538.467 39.00855 850.9915
5 0.2606267 0.06210043 0.6772729 680.7842 3538.216 39.01424 850.9858
6 0.2606392 0.06210071 0.6772601 680.8225 3538.178 39.01512 850.9849
7 0.2606411 0.06210076 0.6772581 680.8283 3538.172 39.01525 850.9847
8 0.2606414 0.06210076 0.6772578 680.8292 3538.171 39.01528 850.9847
9 0.2606415 0.06210076 0.6772578 680.8294 3538.171 39.01528 850.9847
10 0.2606415 0.06210076 0.6772578 680.8294 3538.171 39.01528 850.9847

Table 2.4 Allele frequency estimates and predicted genotype counts at each of
10 iterations of an EM algorithm.

n̂BB = 890
(

(0.06515)2

(0.06515)2 + 2× 0.06515× 0.70325

)
= 39.40033,

n̂Bi = 890
(

2× 0.06515× 0.70325
(0.06515)2 + 2× 0.06515× 0.70325

)
= 850.5997,

We now return to the maximization step and again estimate allele fre-
quencies using the updated predictions for the genotype frequencies.
The results for 10 iterations of this algorithm are shown in Table 2.4.
Using the inferred population allele frequencies and assuming HWE
we can predict the expected genotype counts for our sample. These
are shown in the second row of Table 2.3. The predicted and expected
counts are in fairly close agreement atesting to the accuracy of our in-
ferred allele frequencies. In this case, small departures may be due to a
violation of HWE for the sample.

2.2 Case-control studies of disease-marker association

Following the work of Bernstein in 1925 revealing that a single tri-allelic
locus determined the ABO blood group types, many studies were car-
ried out examining blood group frequencies among human popula-
tions. In a prescient paper, Lionel Penrose (1939) layed out a general
framework for using association to test linkage between phenotypic
traits in humans. He also identified sources of spurious asociation (not
due to linkage) such as geographical substructure. In the 1950s some
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Figure 2.1 caption.

Figure 2.2 caption.

of the first case-control genetic association studies were carried out us-
ing serology to examine the potential association between blood group
type and human disease (Aird et al 1953).

We consider here the study of Aird et al that examined associations
between the ABO blood group type and 5 diseases including peptic ul-
cer, colon and rectal cancer, breast cancer, stomach cancer, and bronchial
cancer. The basic design of an association analysis compares the fre-
quency of one or more genetic markers in a sample of cases versus that
in a sample of matched controls. If the marker frequency differs sig-
nificantly between cases and controls there is an association. This may
indicate that the marker (or a gene closely linked to the marker) plays
a role in the development of the disease.

One can begin by examining the frequencies (of blood groups or in-
ferred allele frequencies) in disease cases versus controls for apparent
differences, which sometimes can appear quite striking. Figures 2.1 and
2.2 present the relative blood group and alleles frequencies, respec-
tively among cases and controls for the 5 diseases mentioned above.
In most cases, the frequencies are rather similar between cases and con-
trols. However, the peptic ulcer data stands out with an apparent excess
of blood group O among individuals with peptic ulcer. Note that the
gene frequencies of Figure 2.2 are estimated using an algorithm similar
to the EM algorithm described previously.
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2.2.1 Relative risk and the odds ratio

The odds ratio provides a powerful method for objectively quantify-
ing the magnitude of disease risk conferred by a factor (such as geno-
type) and is one of the fundamental measures used by epidemiologists.
The odds ratio has been independently discovered several times during
the last century, attesting to its importance and generality. Fisher (1935)
studied an odds ratio statistic in the context of proportions of criminal-
ity in monozygtic versus dizygotic twins (eugenicists were interested
in the heritability of criminality), Berkson (1953) derived an odds ratio
(logit) in the context of logistic regression methods for analyzing dose
response curves, and Woolf (1955) proposed an odds ratio as a measure
to quantify the disease risk conferred by blood group type, removing
the effect of blood type population frequencies. Woolf’s seminal study
appears to be the first application of an odds ratio in human genetic
association analysis.

The odds ratio (OR) of disease is defined as

OR =
P1

1− P1

/
P2

1− P2
=

P1(1− P2)
P2(1− P1)

, (2.1)

where P1 and P2 are the proportions of individuals exposed to the risk
factor among cases and controls, respectively, and 1 − P1 and 1 − P2
are the proportions not exposed to the risk factor. Often the natural
logarithm of the odds (the log-odds) is used instead because a change
in the labels of the risk factors only changes the sign of the log-odds
(LOD) but changes the value of the OR. For example, let OR = 2 so
that LOD = 0.693. If we relabel the risk factors symmetrically, then
OR = 1/2 but LOD = −0.693. The log-odds (LOD), is defined as

LOD = log
(

P1
1− P1

)
− log

(
P2

1− P2

)
.

A major advantage of using the odds ratio (or log-odds), rather than
comparing disease incidence directly between risk-exposed and -unexposed
groups, is that the odds ratio is independent of the population fre-
quency of the risk factor. This allows one to directly compare odd ratios
among populations and separate studies with potentially different fre-
quencies for the risk factor. To see this, let p be the population frequency
of the risk factor and let z1 and z2 be the probabilities that an individual
is either a case, or control, respectively, given that they are exposed to
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the risk factor. The expected population proportions are,

P1 = z1 p,
1− P1 = z2(1− p),

P2 = (1− z1)p,
1− P2 = (1− z2)(1− p).

Substituting these values into equation 2.1 above, we obtain

OR =
[

z1 p
z2(1− p)

] /[
(1− z1)p

(1− z2)(1− p)

]
,

=
(

z1
z2

) /(
1− z1
1− z2

)
,

=
(

z1
1− z1

) /(
z2

1− z2

)
,

which is simply the ratio of the odds of being a case given an exposure
to the risk factor, z1/(1− z1), versus the odds of being a case given no
exposure, z2/(1− z2). This effectively quantifies the increased risk due
to exposure to the risk factor. Clearly, if the factor does not influence
risk this ratio will be 1, otherwise it will be greater than 1.

The relative risk (RR) is defined as the probability that an individual
exposed to the risk factor develops the disease (e.g., becomes a case)
divided by the probability that an unexposed individual develops the
disease,

RR =
Pr(case|exposed)

Pr(case|unexposed)
=

z1
z2

.

The relationship between the OR and RR is

OR = RR×
(

1− z2
1− z1

)
.

Therefore, OR ≈ RR in the case that a disease is rare, so that risks
for both exposed and unexposed individuals are small (e.g., zi << 1,
i = 1, 2). It is not always possible to estimate the RR directly in case-
control studies. The relevant ratio of population parameters is

RR =
Pr(exposed|case)

Pr(unexposed|case)
× Pr(unexposed)

Pr(exposed)

=
(

pC
1− pC

)
×

(
1− p

p

)
,

where pC is the frequency of the risk factor among cases and p is the
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overall population frequency of the risk factor (usually unknown). In
much of the human genetics literature the terms relative risk and odds
ratio are used interchangeably to refer to what here we call the odds
ratio.

2.2.2 Odds ratio estimators

A straightforward estimator of the OR (Woolf, 1955) uses the observed
sample proportions to estimate the population proportions, applying
equation 2.1 above. Table 2.5 presents a contingency table of the out-

Risk Factor

Disease + - Total

+ a b n+
- c d n−

Table 2.5 Contingency table of possible outcomes for a case-control study of
a binary risk factor. Plus and minus signs indicate the presence or absence of

either the risk factor (row) or the disease (column).

comes for a case-control association study of a binary disease trait. The
estimator of Woolf (1955) is

ÔR =
a× d
b× c

. (2.2)

One approach for applying these formulae to biallelic SNPs is to parti-
tion genotypes into binary classes, for example if we label the alleles 1
and 2 we could consider 11 versus 12 or 22, and so on (Thomson, 1981).
This quantity is referred to as the genotype relative risk. Here, we will
compare risks among phenotypes (e.g., bloog group A versus O, etc)
because the genotypes are unknown due to the dominance of A and
B over O. To illustrate, we apply equation 2.2 to the analysis of blood
group data for two diseases included in the case-control study of Aird
el al. (1954), colon cancer and peptic ulcer. Tables 2.6 and 2.7 show the
counts for each disease in a study of individuals from London hospi-
tals (combining counts for males and females). The odds ratio for colon



2.2 Case-control studies of disease-marker association 17

Blood Group
O A Total

Case 665 676 1341
Control 4578 4219 8797

Table 2.6 Combined male and female counts of A and B blood types among
patients with colon cancer (case) and normal individuals (control) from

London hospitals.

cancer is

ÔR =
665× 4219
676× 4578

= 1.10,

and the odds ratio for peptic ulcer is

ÔR =
911× 4219
579× 4578

= 1.45,

Blood Group
O A Total

Case 911 579 1490
Control 4578 4219 8797

Table 2.7 Combined male and female counts of A and B blood types among
patients with peptic ulcer (case) and normal individuals (control) from

London hospitals.

Ultimately, a statistical hypothesis test is needed to decide whether
observed frequency differences are significant, given the sample sizes,
etc, used in the study. With large sample sizes, a very subtle difference
in frequency may be significant whereas with small samples even quite
dramatic differences my be within the realm of deviations expected due
to sampling effects alone. We consider two hypotheses: the null hypoth-
esis (which we aim to test) and the alternative hypothesis (which can
be rather vague). In a simple association analysis, the null hypothesis
is that the OR is 1, while under the alternative hypothesis OR $= 1. We
can test this hypothesis by constructing a 95% confidence interval for
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the estimate of OR and checking whether the interval includes 1, if so
we accept the null hypothesis that OR = 1, otherwise we reject the null
hypothesis at the α = 1− 0.95 = 0.05 level of significance. Woolf (1955)
developed an approximate method for inferring the standard deviation
of OR,

σ̂ =
√

1
a

+
1
b

+
1
c

+
1
d

,

We can use this equation to infer an approximate 95% confidence inter-
val for OR,

ÔR ± 1.96× ÔR× σ̂,

For the example considering relative frequency of A and O blood groups
among colon cancer patients versus controls the standard deviation is

σ̂ =
√

1
556

+
1

676
+

1
4578

+
1

4219
= 0.059,

and the 95% confidence interval is

ÔR ∈ (1.10− 1.96× 0.059× 1.10, 1.10 + 1.96× 0.059× 1.10) = (0.97, 1.23).

Thus the CI for the odds ratio of blood types among cases and con-
trols includes 1 and we fail to reject the null hypothesis of no increased
cancer risk among O versus A blood groups. Considering relative fre-
quency of A and O blood groups among peptic ulcer patients versus
controls the standard deviation is

σ̂ =
√

1
911

+
1

579
+

1
4578

+
1

4219
= 0.057,

and the 95% confidence interval is

ÔR ∈ (1.45− 1.96× 0.057× 1.45, 1.45 + 1.96× 0.057× 1.45) = (1.28, 1.61).

Thus the CI for the odds ratio of blood groups among cases and con-
trols excludes 1 and we reject the null hypothesis of no increased risk
of peptic ulcer among O versus A blood groups. Because OR > 1 there
is significant evidence for an increased risk of peptic ulcer among indi-
viduals with the O blood group type.
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Human Genomic Variation

Humans are diploid, meaning that a normal individual possesses two
copies (homologues) of each of 22 autosomal chromosomes. A pair of
homologous chromosomes will contain essentially all the same genes,
regulatory regions, etc, arranged in the same order on the chromo-
some, but the DNA sequences on each chromosome vary in subtle ways
due to insertions, deletions, point mutations, etc that have accumulated
over a long period of human evolutionary history. The position on a
chromosome where a particular genetic variant occurs is referred to as
a locus and the set of variants at that position (locus) found in a popu-
lation are referred to as alleles. For historical reasons, genetic variants
that can be analyzed using DNA sequencing or other techniques are
referred to as genetic markers.

3.1 Single Nucleotide Polymorphisms (SNPs)

The most common genetic variants in the human genome are single
nucleotide changes arising by point mutation, commonly referred to
as single nucleotide polymorphisms (SNPs). A sample of 3 aligned se-
quences from homologous chromosomes is shown below with one nu-
cleotide that varies at the sixth nucleotide position,

5’ AATTCGCCT 3’

AATTCCCCT

AATTCCCCT

In this example, C is replaced by G in the first sequence. SNPs are typi-
cally identified by 5’ and 3’ flanking sequences that can be used to de-
velop a genotyping method specific for the SNP. The physical location
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of the SNP in the human genome is also usually known. Because the
mutation rate of nuclear DNA is very low (on the order of 10−9) most
SNPs are a result of a single point mutation and therefore only two alle-
les exist in the population. In the above example, the alleles are G and C.
The allele that is least frequent in the population is normally referred to
as the minor allele. A site in a DNA sequence is polymorphic if the mi-
nor allele frequency is greater than some predefined frequency. Often a
frequency of 0.05 is used to choose sites for inclusion in SNP databases.

3.2 Genotypes, Haplotypes and Diplotypes

The combination of alleles found in an individual at a particular ge-
netic marker locus comprise the individual genotype. For example,
if at a specific SNP site an individual possessed a T on one homolo-
gous chromosome and a C on the other, the genotype of that individ-
ual would be C/T. Modern genotyping methods can be used to type
thousands, or millions, of SNPs for a single individual. The multi-locus
genotype is the combination of alleles observed at 2 or more SNPs in a
single individual. A haplotype is a distinct combination of alleles at 2
or more genetic marker loci that are found on a particular chromosome.
A diplotype is the pair of haplotypes residing on the homologous chro-
mosomes of an individual. For example, a diplotype of 3 SNPs is

5’...A..........T..............G..3’

5’...T..........T..............C..3’

where a . indicates a non-polymorphic intervening site in the sequence.
Each line above represents a particular haplotype and the multi-locus
genotype is A/T, T/T, G/C.

3.3 Summarizing Human Genomic Variation

3.3.1 Allele frequency

An important statistic summarizing the variation at a genetic marker
is the allele frequency. Suppose that a population is comprised of N
diploid individuals. Let Xi be the genotype of individual i at a particu-
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lar genetic locus. The frequency of allele A at the locus is defined as

pA =
1

2N

N

∑
i=1

IA(Xi),

where

IA(Xi) =


1 if Xi = A/·
2 if Xi = A/A
0 otherwise

In most cases, we do not sample the entire population and we therefore
estimate the population allele frequency using a random sample of n
individuals,

p̂A =
1

2n

n

∑
i=1

IA(Xi),

where the “hat” symbol is used to indicate that this is an estimate of the
population allele frequency “parameter.” To illustrate the calculation of
allele frequency we analyze data on human SNP polymorphisms col-
lected by the human HapMap project and available online from the db-
SNP database. We focus on RefSNP rs999991 which is located on chro-
mosome 14. The European HapMap sample for this marker comprises
60 unrelated individuals (120 chromosomes). The major allele is C and
the minor allele is T. The genotype counts are C/T : 4 and T/T : 56. The
estimates of the allele frequencies of C and T, respectively, are

pC =
(56× 2) + (4× 1)

2× 60
= 0.967,

and

pT =
4× 1
2× 60

= 0.033 = 1− pC.

3.3.2 Genotype Frequencies and Hardy-Weinberg Proportions

A fundamental result in population genetics is that the expected geno-
type proportions at a locus in a large randomly-mating population rapidly
converge to those give by a simple function of the gene frequencies
known as Hardy-Weinberg equilibrium (HWE) after its co-discoverers.
The expected proportions under HWE are:

A/A A/T T/T
p2

A 2pA(1− pA) (1− pA)2
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This result can be understood by noting that with random mating we
choose a pair of gametes at random from the population of potential
gametes to form an individuals genotype. Each gamete carries allele A

with probability pA. The A/A genotype is therefore obtained with prob-
ability pA × pA = p2

A (because the probability that two independent
events both occur is equal to the product of their probabilities). In a
large population, the expected frequency of A/A genotypes is propor-
tional to the probability that a random individual possesses this geno-
type. The frequency of heterozygotes is the probability of either ordered
genotype A/T or T/A because it does not concern us whether A, for ex-
ample, is received from the mother or the father, so the probability of
a heterozygote is pA(1− pA) + (1− pA)pA = 2pA(1− pA). Using the
allele frequencies estimated previously at SNP marker rs999991 for the
HapMap sample of Europeans we can calculate the expected genotype
proportions (and counts) under HWE for this sample. The expected
proportions are

f (C/C) = p2
C = (0.967)2 = 0.935,

f (C/T) = 2pC(1− pC) = 2× 0.967× 0.033 = 0.064,

f (T/T) = (1− pC)2 = (0.033)2 = 0.001,

and the expected counts are

E(nCC) = n× f (C/C) = 60× 0.935 = 56.1,

E(nCT) = n× f (A/T) = 60× 0.064 = 3.84,

E(nTT) = n× f (T/T) = 60× 0.001 = 0.06.

The difference between the genotype counts predicted under HWE and
those observed (e.g., nCC = 56, nCT = 4, nTT = 0) appears very slight.
We can use a χ2 test to further examine the goodness of fit of the ob-
served to the expected genotype proportions. The χ2 test statistic is de-
fined as

χ2 =
k

∑
i=1

(Obsi − Expi)2

Expi
,

where k is the number of categories (in this case there are 3 categories
corresponding to the 3 possible genotypes), Obsi is the observed num-
ber in category i and Expi is the expected number in category i. The
degrees of freedom (df) for the χ2 test is the difference between the
number of free observations and the number of parameters estimated
from the data under the null hypothesis (HWE). In this case, only one
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parameter, the allele frequency pC must be estimated and there are two
free observations (the counts for any two of the genotypes). The counts
for the third genotype are determined by the other two counts and the
sample size, which is fixed by the experimenter. Thus the number of de-
grees of freedom is 2− 1 = 1. The test statistic should therefore follow a
χ2 distribution with 1 df. The tail probability α specifies the probability
that a value as large as our calculated value is observed under the null
hypothesis. The tail probability can be obtained by looking up the χ2

value in a book of statistical tables, by calculating it directly in a soft-
ware package such as R, or by using an online calculator, for example
the calculator at
http://www.fourmilab.ch/rpkp/experiments/analysis/chiCalc.html.
In this case, the null hypothesis specifies that the proportions fit those
expected under HWE. Thus, we accept (fail to reject) the null hypothe-
sis that genotype frequencies are in HWE when this probability is large
(e.g., α > 0.05). For the European HapMap data we have,

χ2 =
(56− 56.1)2

56.1
+

(4− 3.89)2

3.84
+

(0− 0.06)2

0.06
= 0.07.

The tail probability, which is the probability of observing a value of χ2

at least as large as 0.07 under the null hypothesis, is α = 0.79 and so
we accept the null hypothesis that the genotype proportions fit those
expected under HWE.

3.4 Genotype Frequencies with Inbreeding

The previous results for Hardy-Weinberg genotype proportions are based
on an assumption that the choice of a mate does not depend on the
genotype of the locus under investigation. If individuals tend to mate
with relatives (inbreeding) or they come from separate populations that
exchange few migrants (population subdivision), pairs of alleles will be
more similar at the locus than would be expected under HWE. We now
consider a slightly more realistic model of genotype proportions that
allows for such effects by adding an inbreeding coefficient denoted as
F that represents the probability that a pair of alleles are identical by
descent, meaning that they are descended from a recent common an-
cestor. Inbreeding and population subdivision generate positive values
of F, while random mating results in F = 0. With inbreeding, the geno-
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type proportions are

A/A A/T T/T
(1− F)p2

A + FpA (1− F)2pA(1− pA) (1− F)(1− pA)2 + F(1− pA)

Based on these formulas, it is clear that two possible explanations for a
departure from Hardy-Weinberg equilibrium are inbreeding and pop-
ulation subdivision (there are also other possible explanations, as we
shall see later, such as overdominant selection).

3.5 Population Subdivision and the Wahlund Effect

The Wahlund effect refers to the excess proportion of homozygotes ob-
served in a subdivided population versus a randomly mating popula-
tion. We illustrate the origin of this effect using a simple case of two
populations that exchange no migrants, with allele frequencies p1 and
p2, respectively, for allele A at a biallelic locus. Table 3.1 gives the ex-
pected genotype proportions in each population, the expected propor-
tion in the “pooled” (or admixed) population (a population made up
of a mixture of individuals from each population), and the expected
genotype proportions under HWE (ignoring the underlying popula-
tion subdivision). Using these results, it is possible to show directly that

Genotype A/A A/a a/a

Population 1 p2
1 2p1(1− p1) (1− p1)2

Population 2 p2
2 2p2(1− p2) (1− p2)2

Pooled (p2
1 + p2

2)/2 p1(1− p1) + p2(1− p2) [(1− p1)2+
(1− p2)2]/2

No subdivision p2 2p(1− p) (1− p)2

Table 3.1 Expected genotype proportions in each or two populations
(Populations 1 and 2), in a population that is an admixture of the two

populations (Pooled), and the genotype proportions that would be expected in
a population with the same average allele frequencies and no admixture (No
subdivision). Note that p denotes the average allele frequency in the admixed

population, p = (p1 + p2)/2.
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population subdivision has an effect similar to inbreeding (e.g., increas-
ing the proportion of homozygotes). Using the formulas given above,
we represent the expected proportion of homozygotes in the admixed
population by assuming that the effect will be similar to inbreeding,
namely

f (A/A) = p2(1− F) + pF,

and we then set this equal to the expected proportion in the admixed
population, from table 3.1 above,

p2(1− F) + p = (p2
1 + p2

2)/2.

We then solve for F to determine the inbreeding coefficient in this situ-
ation,

F =
(p2

1 + p2
2)− 2p2

2(p− p2)
=

(p2
1 + p2

2)/2− p2

p(1− p)
=

var(p)
p(1− p)

, (3.1)

where we have made use of the standard result from statistics that “the
average of the square minus the square of the average” equals the vari-
ance,

(p2
1 + p2

2)/2− p2 = var(p).

The variance is always a positive number, as is the product in the de-
nominator, because p < 1, and the inbreeding coefficient is therefore
also positive leading to an excess of homozygotes in the admixed pop-
ulation over what would be expected under random mating. The for-
mula for F given in equation 3.1 is commonly referred to as the fixation
index and can be used as a measure of the degree of population subdi-
vision.
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Population subdivision, haplotype

inference and linkage disequilibrium

4.1 Subdivision Between Han Chinese and Europeans

To illustrate how the distribution of genotype proportions in a popu-
lation sample can be used to detect population subdivision we again
consider SNP marker rs999991 from the dbSNP database. The geno-
type counts in a sample of n = 43 unrelated Han Chinese are C/C : 14,
C/T : 20, and T/T : 9. The allele frequencies in the sample are,

pC =
2(14) + 20

2(43)
=

48
86

= 0.558,

pT = 1− pC = 0.442,

and the expected genotype counts are

E(nCC) = 43× (0.558)2 = 13.389,
E(nCT) = 43× 2(0.558)(0.442) = 21.211,
E(nTT) = 43× (0.442)2 = 8.401.

The χ2 goodness of fit test statistic is

χ2 =
(14− 13.389)2

13.389
+

(20− 21.211)2

21.211
+

(9− 8.401)2

8.401
= 0.13973.

The probability of a χ2 value at least as great as this under the null
hypothesis that proportions are in HWE is α = 0.709 and we therefore
fail to reject the null hypothesis. Next, we pool the Han Chinese sample
with the European sample we examined previously. We now have n =
103 unrelated individuals with genotype counts C/C : 56 + 14 = 70,
C/T : 4 + 20 = 24, and T/T : 0 + 9 = 9. The pooled allele frequencies
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are

pC =
2(70) + 24

2(103)
= 0.7961,

pT = 1− pC = 0.2039,

and the expected genotype counts are

E(nCC) = 103× (0.7961)2 = 65.282,
E(nCT) = 103× 2(0.7961)(0.2039) = 33.437,
E(nTT) = 103× (0.2039)2 = 4.281.

The χ2 goodness of fit test statistic is

χ2 =
(70− 65.282)2

65.282
+

(24− 33.437)2

33.437
+

(9− 4.281)2

4.281
= 8.206.

The probability of a χ2 value at least as great as this under the null
hypothesis that proportions are in HWE is α = 0.004 and we therefore
reject the null hypothesis at the α = 0.004 level of significance. The
genotype proportions do not fit those expected under HWE and the
most likely explanation is population subdivision. We can also calculate
the fixation index for these data. The between-population variance of
allele frequency is

var(p) =
0.5582 + 0.9672

2
− 0.79612 = 0.08364,

and the fixation index is

F =
0.08364

0.7961(1− 0.7961)
= 0.515.

Thus, there is a large degree of genetic differentiation between the two
populations at this locus as measured by the fixation index.

4.2 Marker Heterozygosity

A simple summary statistic for quantifying the variation of a genetic
marker is the heterozygosity, which is the proportion of heterozygotes.
Heterozygosity can be calculated from a sample of genotypes in several
ways. The direct estimator of heterozygosity simply counts the propor-
tion of heterozygotes present in the sample,

ĥ1 =
1
n

n

∑
i=1

Ihet(Xi), (4.1)
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where

Ihet(Xi) =
{

1 if Xi = Y/Z,
0 otherwise,

and Y ∈ {A, C, G, T} and Z ∈ {A, C, G, T} are any two nucleotides such
that Y $= Z. The allele frequency estimator of heterozygosity assumes
Hardy-Weinberg proportions to estimate heterozygosity,

ĥ2 = 1−
k

∑
i=1

p2
i , (4.2)

where k is the number of alleles at a locus (for most SNPs k = 2). The
allele frequency estimator will be more accurate than the direct estima-
tor if the genotype frequencies are in HWE in the population. Alter-
natively, the direct estimator may be more accurate if the proportions
deviate sufficiently from HWE. However, very often the two estimators
give highly similar results. For the European HapMap sample, at SNP
rs999991, the direct estimator gives,

ĥ1 =
4

60
= 0.067,

and the indirect estimator gives,

ĥ2 = 1− (0.967)2 − (0.0332) = 0.064.

In this case, the two estimates vary only slightly at the third decimal
place.

4.3 Inference of Haplotype Phase

Current genotyping technologies provide multi-locus genotypes but do
not directly provide the haplotype phase, that is, the diplotype describ-
ing the alleles that co-occur on each homologous chromosome. In many
cases, it is possible to determine the haplotype phase from the sample
of multilocus genotypes. Here, we consider one simple technique that
infers phase by examining the genotypes of close relatives (in our exam-
ple, a “trio” of 2 parents and 1 child). Later, we will consider more so-
phisticated methods for phase inference using either family pedigrees
or population samples of unrelated individuals.
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4.3.1 Genotypes to diplotypes: A one to many mapping

A multilocus genotype is typically compatible with many possible hap-
lotypes. For example, if an individual is heterozygous for two linked
SNP loci there are two possible distinct combinations of diplotypes,

Genotypes
-------------------
SNP 1 SNP 2
A/C G/T
-------------------
Possible Diplotypes
A-G/C-T A-T/C-G

If one of the genotypes is homozygous the diplotype (haplotype phase)
is determined,

Genotypes
-------------------
SNP 1 SNP 2
A/C T/T
-------------------
Possible Diplotypes
A-T/C-T

Even if an individual is heterozygous for a given locus, if additional rel-
atives are examined it is likely that one or more of the relatives are ho-
mozygous at the locus (and phase might therefore be indirectly estab-
lished). The following analysis of two-locus genotypes from the mem-
bers of a nuclear family illustrates this principle,

Mother Genotypes Father Genotypes
---------------- ----------------
A/A,G/G C/A,T/T

Mother Diplotypes Father Diplotypes
----------------- -----------------
A-G/A-G C-T/A-T

Child Genotypes
---------------
A/C,G/T
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Possible Child Diplotypes (ignoring parents)
-------------------------------------------
A-G/C-T C-G/A-T

Possible Child Diplotypes (considering parents)
----------------------------------------------
A-G/C-T

In the above example, the diplotype of the child (whose genotypes are
heterozygous at both loci) cannot be directly inferred. The child’s diplo-
type can be indirectly inferred, however, by considering the parental
genotypes. This process is known as phase inference. Haplotype infor-
mation is needed to test for non-random associations of alleles on chro-
mosomes, due to linkage or other factors. The non-random assortment
of alleles onto chromosomes is referred to as “linkage disequilibrium.”
Measures of linkage disequilibrium will be the subject of the next sec-
tion.

4.4 Linkage Disequilibrium

In the absence of recombination, alleles located on the same chromo-
some are co-transmitted to offspring. Here we consider a simple statis-
tic that is often used to quantify the non-random assortment of alleles
onto chromosomes (e.g., non-random frequencies of haplotypes). If two
alleles are sufficiently far apart on a chromosome, recombination oc-
curs at each generation (meiosis) and the alleles assort independently
to form genotypes in offspring (e.g., Mendel’s second law applies). Al-
leles that assort independently are in linkage equilibrium and those
that are non-randomly assorted onto chromosomes are in linkage dis-
equilibrium. To Illustrate, consider a pair of biallelic genetic markers
located on the same chromosome. Marker locus 1 has alleles A and a,
marker locus 2 has alleles B and b. The possible haplotypes are

A-B
a-B
a-b
A-b

We denote the frequency of haplotype A-B as pAB and so on. The marginal
(or total) frequency of allele A is obtained by summing up the frequen-
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cies of all haplotypes that contain allele A at locus 1,

pA = pAB + pAb,

and the marginal frequencies of other alleles are obtained similarly. The
disequilibrium coefficient is then defined as

D = pAB − pA pB. (4.3)

To obtain a statistic that varies between -1 and +1, equation 4.3 above is
normalized by dividing by its maximum possible value to obtain,

D′ = D/Dmax,

where

Dmax =
{

min(pA[1− pB], [1− pA]pB) if D ≥ 0
min(pA pB, [1− pA][1− pB]) if D < 0

Because the sign of the statistic D′ depends on the labeling of alleles,
which is arbitrary, the absolute value |D′| is most often used. To il-
lustrate the use of this statistic, consider a sample with pAB = 0.6,
paB = 0.1, pab = 0.1 and pAb = 0.2. The marginal allele frequencies
are

pA = 0.6 + 0.2 = 0.8
pB = 0.6 + 0.1 = 0.7
pa = 0.1 + 0.1 = 0.2
pb = 0.1 + 0.2 = 0.3,

the disequilibrium coefficient D is

D = 0.6− 0.8× 0.7 = 0.04,

and the normalized disequilibrium coefficient D′ is

D′ =
0.04

min(0.24, 0.14)
=

0.04
0.14

= 0.286.

In this case, the observed frequency (pAB = 0.6) of A-B is greater than
expected under random assortment (pA × pB = 0.8× 0.7 = 0.56) and
there is positive linkage disequilibrium of the alleles. Two extreme cases
of D′ are worth considering. First, there is the case of complete dis-
equilibrium. An example is pAB = pab = 0.5 and paB = pAb = 0,
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so only two of the four possible haplotypes are observed. In this case,
pA = pB = pb = pa = 0.5, and

D′ =
0.5− 0.52

0.52 =
1− 0.5

0.5
= 1.

The other extreme is complete equilibrium. An example is PAB = pAb =
paB = pab = 0.25. In this case, pA = pB = pb = pa = 0.5, and

D = pAB − pA pB = 0.25− 0.5× 0.5 = 0,

and therefore D′ = 0. The statistic |D′| is often used to summarize link-
age disequilibrium across the genome in human population samples.
There is a negative relationship between |D′| and physical distance
along a chromosome because markers spaced at greater intervals along
a chromosome experience more recombination events, on average, per
generation. The patterns of LD across the human genome are somewhat
variable among populations and some regions of the genome have sig-
nificantly lower LD over a similar physical distance due to the presence
of recombination hotspots. Average levels of LD across the genome are
related to the time that has elapsed since all humans last shared a com-
mon ancestral genome.
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Human Population Genetics

5.1 Allele Frequency Change in Populations

Classical models of population genetic evolution focus on describing
the change in allele frequencies from one generation to the next un-
der the influence of forces such as migration, mutation, selection and
genetic drift. The bulk of the theory in this area was developed from
the 1930s to the 1970s. This theory has taken on new relevance with
the huge increase in population genetic data during the last several
decades. Here, we consider some simple population genetic results per-
tinent to studies of human genetic variation.

5.1.1 Continuous approximation of allele frequency

Define the relative population frequency of allele A to be

pA =
nA
2N

,

where nA is the number of chromosomes in the population carrying
allele A and N is the diploid population size. The smallest possible
change in allele frequency is 1/(2N) (e.g., an increase, or decrease, of
one copy of the allele). If N = 2, for example, then 0.25 is the small-
est possible change of allele frequency and pA takes possible values
pA ∈ {0, 0.25, 0.5, 0.75, 1}. If N = 100 then 1/(200) = 0.005 is the
smallest possible change of frequency and pA assumes a finer range
of values. Finally, in the limit as N → ∞ the smallest possible change
in frequency approaches 0, limN→∞ 1/(2N) = 0 and pA appears con-
tinuous. This is the basis for modeling the change of allele frequency in
large populations as a continuous variable. The formal “diffusion the-
ory” for this approximation is beyond the scope of this course and we
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will assume that the approximation is valid for the situations we con-
sider without providing any formal proof.

The first set of results that we consider are for the so-called deter-
ministic models. These models are valid when the population is very
large so that the allele frequency changes under the effects of selection,
migration, etc, in a completely predictable way (e.g., stochastic events
such as random variations in number of offspring per individual, etc,
can be ignored). In small populations, random effects are important
and we will later consider a model known as “genetic drift” that ac-
counts for such effects. For simplicity, all our analyses will assume that
the species under consideration have discrete non-overlapping genera-
tions. This approximates the situation for human populations if we set
the generation time to be approximately 20 years.

5.1.2 Migration between populations

Suppose that two large populations, both of size N, exchange migrants
in a symmetrical manner such that a proportion m of the individuals in
each population are replaced by migrants from the other population in
each generation. Consider a biallelic locus and let p(t)

1 and p(t)
2 be the

frequencies of allele A in populations 1 and 2, respectively, at genera-
tion t. Under this model, the average allele frequency in population 1
at the next generation is given by the equation

p(t+1)
1 = p(t)

1 (1−m) + p(t)
2 m,

and the average allele frequency for population 2 at the next generation
is

p(t+1)
2 = p(t)

2 (1−m) + p(t)
1 m.

These equations can be understood by noting that in each generation
a fraction (1− m) of individuals are non-migrants and therefore have
allele frequencies identical to those of the previous generation in that
population and a fraction m of individuals are migrants and therefore
have allele frequencies identical to those of the alternative population at
the previous generation. These equations are “iterative” meaning that
the allele frequency at any point in the future can be obtained by suc-
cessive applications of the equations for single generation change. For
example, if the initial frequencies are p(0)

1 and p(0)
2 then the frequencies
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after 2 generations are

p(1)
1 = p(0)

1 (1−m) + p(0)
2 m,

p(1)
2 = p(0)

2 (1−m) + p(0)
1 m,

p(2)
1 = p(1)

1 (1−m) + p(1)
2 m,

p(2)
2 = p(1)

2 (1−m) + p(1)
1 m.

The equilibrium allele frequency is achieved when the allele frequen-
cies are no longer changing from one generation to the next (this is also
referred to as the stationary or steady-state frequency). We can solve for
the change in allele frequency per generation in population 1 as follows

∆p1 = p(t+1)
1 − p(t)

1 = m(p(t)
1 − p(t)

2 ).

It is clear that the frequency is no longer changing (e.g., ∆p1 = 0) if
either there is no migration (m = 0) or the allele frequencies are equal
in the two populations (p(t)

1 = p(t)
2 ). Thus, with ongoing migration the

populations have equal allele frequencies at equilibrium. The number
of generations required to reach equilibrium depends on the migration
rate; with a higher migration rate equilibrium is achieved more quickly.

5.1.3 Mutation

The mutation process in humans is very complex. Later, we will con-
sider models of DNA substitution that are intended to be realistic for
humans. Here, we consider a highly simplified model of mutation to
get some qualitative feeling for the importance of mutation in modify-
ing gene frequencies. Suppose that two possible alleles exist at a locus
A and a. The rate of mutation per generation from allele A → a is µ and
the rate of mutation from a → A is ν. The frequency of A at generation
t is p(t)

A . The frequency of A at the next generation under this model of
mutation pressure is

p(t+1)
A = p(t)

A (1− µ) + (1− p(t)
A )ν.

This equation can be understood by noting that the current proportion
of A alleles is P(t)

A and a fraction (1− µ) of these do not experience mu-
tation and are A alleles in the next generation. Conversely, the current
proportion of a alleles is (1 − p(t)

A ) and a fraction ν of these a alleles
mutate to become A alleles in the next generation. To determine the
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equilibrium frequency of allele A we solve for the expected change in
allele frequency per generation under mutation pressure,

∆pA = −p(t)
A µ + (1− p(t)

A )ν.

The allele frequency is stable if ∆pA = 0, namely if,

p(t)
A µ = (1− p(t)

A )ν.

Solving the above equation for pA yields the equilibrium frequency,
pA∗, of the A allele,

pA∗ =
ν

ν + µ
.

Thus, at equilibrium the frequency of allele A is equal to the relative
rate of mutation to allele A from allele a.

5.1.4 Selection

Natural selection is the major force underlying adaptive evolution. There
are many good examples of current, and past, episodes of selection in
humans. Here, we consider the classical single locus theory of natural
selection in large populations. Despite the simplicity of the model this
theory has serious applications in studying many human genetic poly-
morphisms. Table 5.1 provides the parameters of a selection model for
a single genetic locus with two alleles A and a. The mean fitness of the
population is the proportion of the population that survive selection,

w = wAA p2
A + wAa2pA(1− pA) + waa(1− pA)2.

We now derive an iterative equation for the change in allele frequency
per generation under selection pressure. The genotype proportions among
adults are given in the third row of Table 5.1. Individuals that are A/A
produce entirely A gametes, whereas individuals that are A/a produce
1/2 A gametes on average. Thus, the proportion of A gametes at the
next generation of mating is

f (A) =
p2

AwAA
w

+
1
2

2pA(1− pA)wAa
w

=
pA(pAwAA + (1− pA)wAa)

w
,

and the iterative equation for the expected frequency of allele A (equiv-
alent to the frequency of A among gametes) at the next generation is

p(t+1)
A =

p(t)
A (p(t)

A wAA + (1− p(t)
A )wAa)

wAA(p(t)
A )2 + wAa2p(t)

A (1− p(t)
A ) + waa(1− p(t)

A )2
. (5.1)
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Genotype A/A A/a a/a

Fitness wAA wAa waa

Frequency p2
A 2pA(1− pA) (1− pA)2

(at conception)
Frequency p2

AwAA/w 2pA(1− pA)wAa/w (1− pA)2waa/w
(after selection)

Table 5.1 Parameters of a biallelic single locus deterministic selection model.
Mating is at random, so the genotype frequencies at conception are in

Hardy-Weinberg equilibrium proportions (row 2 above ). The proportion of
genotypes A/A, A/a and a/a that survive selection are given by wAA, wAa
and waa, respectively. The relative proportions of genotypes after selection are

given in row 3, where w is the mean fitness of the population (e.g., the
proportion of the population that survives selection).

To study the equilibrium allele frequencies under this model, we first
derive a formula for the expected change in allele frequency per gener-
ation,

∆pA = p(t+1)
A − p(t)

A

=
p(t)

A (1− p(t)
A )[p(t)

A (wAA − wAa) + (1− p(t)
A )(wAa − waa)]

wAA(p(t)
A )2 + wAa2p(t)

A (1− p(t)
A ) + waa(1− p(t)

A )2
.

Clearly, ∆pA = 0 if pA = 0 or pA = 1. If directional selection is operat-
ing in favor of allele A, namely wAA ≥ wAa > waa, then the equilibrium
frequency of allele A is pA∗ = 1. Conversely, if directional selection is
operating in favor of allele a, namely waa ≥ wAa > wAA, then the equi-
librium frequency of allele A is pA∗ = 0. It is also clear from the above
equation that a third equilibrium exists (e.g., ∆pA = 0) if

p(t)
A (wAA − wAa) = −(1− p(t)

A )(wAa − waa).

Solving this equality for the equilibrium frequency of allele A under
this condition gives,

pA∗ =
wAa − waa

2wAa − waa − wAA
.

This is the equilibrium frequency under overdominant selection when
the fitness of heterozgotes is greater than that of either homozygote,



38 Human Population Genetics

namely wAa > wAA and wAa > waa. As an example of overdominance,
let wAA = waa = α and wAa > α. Then at equilibrium,

pA∗ =
wAa − waa

2wAa − waa − wAA

=
wAa − α

2wAa − α− α

=
wAa − α

2(wAa − α)
= 1/2.

Sickle cell trait in Africa
In sub-saharan Africa the frequency, pS, of the mutant beta globin al-
lele βS is between 0.10 ≤ pS ≤ 0.20. What is the relative fitness, R =
wSA/wAA of βSβA genotypes versus βAβA, where βA denotes the non-
mutant allele. Assume that the fitness of mutant homozygotes βSβS

(who develop sickle-cell anemia) is near zero (wSS = 0) which would
likely have been the case historically. Assume that the frequency of βS

is at equilibrium so that,

pS∗ =
wSA − wAA

2wSA − wAA − wSS
=

wSA − wAA
2wSA − wAA

=
R− 1

2R− 1
.

Solving for R as a function of p∗ gives,

R =
p ∗ −1

2p ∗ −1
=

1− p∗
1− 2p∗ .

If p∗ = 0.10 this gives,

R = 1− 0.101− 2(0.1) = 1.125,

so heterozygotes have a 12.5% increase in fitness, while if p∗ = 0.20 this
gives,

R =
1− 0.20

1− 2(0.20)
= 1.333,

so heterozygotes have a 33% fitness increase. Note that if wss > 0 then
R would be smaller.

5.1.5 Genetic drift

Genetic drift is the term used to refer to the random changes in allele
frequency that occur by chance sampling effects in small populations.
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Genetic drift is an example of a “stochastic” process; if the drift pro-
cess were repeated multiple times starting with the same initial popu-
lation allele frequency the outcome would be different each time. The
expected, or average, frequency at generation t + 1, given the current
frequency at generation t is

E(p(t+1)|p(t)) = p(t).

Thus, if we repeat the genetic drift process many times, starting with
the same initial allele frequency p(t), the average frequency over all the
repetitions is p(t), so the genetic drift process has no tendency to either
increase, or decrease, allele frequency on average. However, in any par-
ticular realization of a population experiencing genetic drift the allele
frequency will change in a random fashion. The variance of allele fre-
quency at generation t + 1 given the current frequency at generation t
is

var(p(t+1)|p(t)) =
p(t)(1− p(t))

2N
,

where N is the diploid population size. The greater the variance, the
more random change occurs from one population to the next. The in-
fluence of genetic drift in changing allele frequencies decreases with
an increase in the population size. In large populations, such as the cur-
rent human population genetic drift has little influence relative to forces
such as migration and selection. If an allele has current frequency p(t)

then if no mutation is occurring, the probability that the allele is ul-
timately lost (e.g., p(∞) = 0) is 1 − p(t) and the probability that it is
ultimately fixed (e.g., p(∞) = 1) is p(t). If mutation is operating then an
allele that is lost can be reintroduced by mutation so permanent fixa-
tion, or loss, does not occur.



7
DNA Fingerprinting

7.1 Introduction

The concept of DNA fingerprinting originated in the early 1980s and
is largely due to the work of Alec Jeffreys. He used a combination of
restriction enzymes for cutting DNA into fragments based on the pres-
ence or absence of restriction sites and migration of DNA fragments on
polyacrylamide gels followed by a Southern blotting (DNA-DNA hy-
bridization) experiment using a radioactive probe to detect repetitive
DNA fragments of variable length among individuals, referred to as
minisatellites. A minisatellite is comprised of a core motif tens to hun-
dreds of nucleotides in length that is repeated multiple times in a tan-
dem array. If “core” denotes the core motif then an allele with n copies is
represented as (core)n. In the hybridization experiment the fragmented
single-stranded DNA is probed with a radioactively labelled sequence
bearing a core motif which labels all the alleles (at many locations in the
genome) that represent variable repeat numbers of the motif. The mul-
tilocus profile of bands produced by Jeffreys’ technique are ordered ac-
cording to their size (migration distances in the gel). These profiles are
expected to match between the DNA sample from a crime scene and
that from a suspect in the case that the suspect is the source of the crime
sample. Otherwise, they are expected to differ. Ignoring genotyping er-
rors, different DNA profiles between suspect and crime scene sample
will lead to the exclusion of the suspect.

Given the type of data produced by the Jeffreys’ assay it is essentially
impossible to calculate the probability of a random match for an indi-
vidual that is not the perpetrator because it is not known which bands
on a gel correspond to alleles at each locus. It is not even known how
many loci are surveyed! Apart from this, there are other drawbacks to
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Jeffreys’ method: it requires a large amount of DNA (this technique was
developed in the pre-PCR era) and it requires the use of a radioactive
labelling procedure that is expensive and dangerous.

An alternative approach for DNA fingerprinting using PCR ampli-
fication of shorter DNA repeats, called short tandem repeats (STRs),
or microsatellite loci, using locus-specific PCR primers, was developed
in the late 1980s. The amplified DNA is run on a polyacrylamide gel
and alleles corresponding to different numbers of repeats are identified
using standard DNA staining techniques. No radioactive probe blot-
ting is necessary making the procedure simple and safe. Also, the PCR
step allows DNA fingerprinting using minute quantities of DNA from a
crime scene. Microsatellite markers have now become the standard tool
for DNA fingerprinting. An advantage of this approach that the alle-
les at each locus are unambiguously identified allowing population ge-
netic procedures to be applied to calculate random match probabilities,
etc. In addition to forensic applications, DNA fingerprinting is used in
many other areas, including paternity analysis, and in wildlife genetics
to carry out “genetic” mark-recapture studies to infer population size,
etc.

7.2 DNA forensics

In the US, since the early 1990s a standard set of 13 microsatellite mark-
ers at unlinked autosomal loci plus two markers on the sex chromo-
somes (one on the X and one on the Y) have been used for DNA fin-
gerprinting. These loci are referred to as the “Combined DNA Index
System” or CODIS. The FBI maintains a large database of DNA finger-
print profiles (over 5 million), mostly of convicted felons, which was
formally authorized by the DNA Identification Act passed in 1994. Be-
cause the number of CODIS loci is relatively small the probability of
a random match cannot be neglected. This is especially true if a crime
sample is compared with all 5 million individuals in the database of
convicted felons. Thus, we need to use probability models to calculate
the probability of chance matches. If this probability is very low there is
stronger evidence that the suspect is the source of DNA from the crime
scene when there is a perfect match of DNA fingerprint profiles.
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7.2.1 Calculating DNA fingerprint match probabilities

We will begin by formulating the problem of interpreting DNA finger-
prints from a crime scene sample and a suspect as a pair of mutually
exclusive possibilities, stated as hypotheses to be tested:

• Hp: suspect left the DNA sample at the crime scene
• Hd: some other person left the DNA sample at the crime scene

The data are the multilocus genotype of the suspect, GS, and the mul-
tilocus genotype from the crime scene DNA sample, GC. In addition,
there is other non-genetic evidence (witnesses to the crime, etc) denoted
as I. The likelihood ratio will be used to evaluate the evidence and is
defined as

LR =
Pr(GC|GS, Hp, I)
Pr(GC|GS, Hd, I)

,

where Pr(X|Y) should be read as “the probability of X given a fixed
value of Y.” This is called a conditional probability. If we assume that
there is no genotyping error, then if the DNA genotypes from the sus-
pect and the crime scene do not match,

Pr(GC|GS, Hp, I) = 0 and LR = 0.

In other words, the probability of observing the mismatched genotype
from the crime scene sample given that the suspect is the perpetrator
(e.g., given Hp is true) is 0. So, this result produces a likelihood ratio of
0 and excludes the suspect. That simple.

If the DNA fingerprint from the crime scene matches that of the sus-
pect, GC = GS, the situation is more complicated to evaluate. We cannot
simply assume that the suspect is the source of the crime scene sample
because it is always possible that more than one individual in a popu-
lation has a given DNA fingerprint profile. Again, considering the LR
we see that the numerator is,

Pr(GC|GS, HP, I) = 1.

In other words, if the suspect is indeed the perpetrator the crime scene
sample DNA fingerprint must match the suspect’s DNA fingerprint
(e.g., with probability 1 they are identical) and so the numerator of the
LR becomes 1. However, the denominator (which is the probability of a
match given that the crime scene sample comes from another individ-
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ual) is not zero and remains to be determined so that,

LR =
1

Pr(GC|GS, Hd, I)
.

If uncertainty about GC is not influenced by GS (this may not be true,
for example if the crime scene sample comes from a close relative of the
suspect) then

LR =
1

Pr(GC|Hd, I)
.

Note that to calculate the probability of observing the genotype GC in
an individual that is not the source of the crime scene DNA we need
to know the population allele frequencies. As well, to predict genotype
proportions from population allele frequencies, we will need to assume
random mating (and HWE). Thus, we need to know population allele
frequencies for a population that is “representative” of the population
of which the suspect is a member. Population allele frequencies vary
extensively among human ethnic groups and geographical regions and
obtaining representative allele frequencies for such calculations is often
problematic.

We now consider a simple example calculation using a single genetic
locus for fingerprinting. Suppose that both the crime sample and the
suspect are homozygous for allele A at the locus and therefore “match.”
Thus, GS = GC = A/A, and the frequency of A in the population is
pA = 0.8. The likelihood ratio is

LR =
1

Pr(A/A|pA)
=

1
0.82 = 1.5625.

Larger values of the LR indicates increasing evidence that the suspect
left the crime sample (e.g., supports Hp versus Hd). A LRT of this mag-
nitude would not convict a suspect. Increasing the number of loci sur-
veyed will increase the significance of a match. Suppose that 3 loci are
instead genotyped and we again obtain a perfect match. The genotypes
are GC = GS = A/A, B/b, c/c and the population allele frequencies are
pA = 0.8, pB = 0.7, and pc = 0.5. The loci are unlinked (and genotypes
are therefore independent) and so the denominator of the likelihood
ratio is a product of the probability for each individual locus,

LR =
1

Pr(A/A|pA)× Pr(B/b|pB)× Pr(c/c|pc)
.
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Assuming HWE at each locus the probability is calculated as

LR =
1

0.82 × [2(0.7)0.3]× 0.52 = 14.88.

Thus, the evidence against the suspect is not an order or magnitude
greater. For a sample of L genetic loci, the general formula for the like-
lihood ratio, given a match between suspect and crime scene DNA fin-
gerprints, is

1/LR =
L

∏
i=1

Pr(GC(i)|pi),

where GC(i) is the genotype at the ith locus and pi is the population
allele frequency at locus i. We again assume HWE equilibrium to cal-
culate the genotype probabilities given the allele frequencies at each
locus. Note we have used the shorthand symbol,

n

∏
i=1

xi = x1 × x2 × · · · × xn.

earlier we noted that we needed to know the population allele frequen-
cies to calculate random match probabilities. If an inappropriate popu-
lation sample is used to estimate these frequencies (e.g., one that is not
representative of the population of which the suspect is a member) this
can lead to false incrimination.

To provide an example, suppose that we survey two genetic loci. We
sample individuals from population 1, with allele frequencies pA =
0.01 and pB = 0.01 at each locus, to estimate allele frequencies. The sus-
pect actually comes from population 2 in which the allele frequencies
are qA = 0.99 and qB = 0.99. Suppose that the suspect is a match with
genotypes A/A and B/B. Using allele frequencies from population 1,
we calculate the probability of a random match as,

Pr(A/A, B/B|pA, pB) = 0.012 × 0.012 = 1/100, 000.

However, if we had used the correct population frequencies (those of
population 1) we would calculate the match probability as

Pr(A/A, B/B|qA, qB) = 0.992 × 0.992 = 0.9801

Thus, using the wrong population we have fairly damning evidence
(LR = 100,000) while using the correct population there is no convincing
evidence (LR = 1.02). This is an extreme example, but for diverse human
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populations allele frequencies often vary by 30% or more, so it is not
entirely unrealistic.

The bottom line in DNA forensics is that more genetic loci are always
better, both in terms of reducing the risk of false incrimination and in
increasing the evidence against the perpetrator. If modern genotyping
technologies were used to genotype say 100,000 SNP loci, then every
individual on earth would be utterly unique (apart from monozygotic
twins) and we would not need to calculate probabilities of random
matches: one would be virtually certain that that the sample came from
the suspect in the case of a match (apart from cross-contamination) as
well as being certain that it did not in the case of a mismatch (apart
from genotyping errors). Unfortunately, the FBI and local law enforce-
ment agencies have invested a large amount of effort in creating a huge
database of felons using only 13 loci and so the fairly unreliable current
DNA fingerprinting technologies persist. The concern about random
matches is particularly significant when blind scanning a database of
millions of samples using only 13 loci; in this case random matches
may become uncomfortably probable.



8
Parentage Analysis

DNA fingerprint profiles are also used for parentage analysis (most of-
ten paternity testing). Let GM be the genotype of the mother and GC
be the genotype of the child. The genotype of the alleged father is GAF.
There are two mutually exclusive hypotheses to be tested. The first hy-
pothesis is Hp: the alleged father is the biological father of the child. The
second hypothesis is Hd: some other man is the father of the child. The
genetic evidence is E = {GM, GC, GAF}. We will consider two measures
of support for paternity of the alleged father. The paternity index (PI) is
a likelihood ratio (LR) of the probability of the genetic data given that
the alleged father is the biological father and considering other non-
genetic evidence, I, to the probability of the genetic data given that the
father is some other man and considering I,

LR =
Pr(E|Hp, I)
Pr(E|Hd, I)

.

The probability of paternity given the genetic and non-genetic evidence
is defined as

Pr(Hp|E, I) =
Pr(E|Hp, I)× Pr(Hp|I)

Pr(E|I) .

This is obtained by applying Bayes’ theorem and is sometimes referred
to as the “posterior” probability of paternity. The denominator in this
equation is 1 (e.g., Pr(E|I) = 1) because the genetic data is assumed to
be independent of other evidence of paternity. The first term in the nu-
merator is the likelihood (the probability of the observed genetic data
under the hypothesis of paternity and given the other evidence (which
usually does not influence the genetics). The second term in the numer-
ator is the “prior” probability of paternity based on other sources of
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non-genetic evidence concerning possible paternity, I. The “posterior
odds” of paternity is the ratio of the posterior probability of paternity
versus non-paternity and simplifies to be the LR multiplied by the ratio
of prior probabilities of paternity versus non-paternity,

Pr(Hp|E, I)
Pr(Hd|E, I)

= LR×
Pr(Hp|I)
Pr(Hd|I)

.

By some tedious algebra one can show that the formula for the posterior
probability of paternity simplifies to

Pr(Hp|E, I) =
LR× Pr(Hp|I)

LR× Pr(Hp|I) + [1− Pr(Hp|I)]
.

If there is no substantial prior evidence of paternity, the prior odds ratio
is taken to be 1, so that Pr(Hd|I) = Pr(Hp|I) = 0.5. In that case, the
probability of paternity simplifies to

Pr(Hp|E, I) =
LR× 0.5

LR× 0.5 + [1− 0.5]
=

LR
LR + 1

.

Thus, when the LR (PI) is small the probability of paternity is near zero
and when it is large the probability of paternity approaches 1.

Pr(Hp|I) LR(PI)
1 10 100 1000

0.000 0.000 0.000 0.000 0.000
0.001 0.001 0.010 0.091 0.500
0.500 0.500 0.910 0.990 0.999
1.000 1.000 1.000 1.000 1.000

Table 8.1 Posterior probability of paternity calculated for various values of
the prior probability of paternity (rows) and the likelihood ratio (LR), also

called the paternity index (PI) (columns).

Table 8.1 shows the posterior probability of paternity as a function
of prior probability of paternity (based on non-genetic evidence, I) and
LR (or PI).

8.1 Calculation of the likelihood ratio

The likelihood ratio is defined to be the probability of the genotype
data (for child, mother and alleged father) under the hypothesis that
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the alleged father is the biological father, Hp, divided by the probabil-
ity under the hypothesis that some other man is the father, Hd. This
formula simplifies as follows,

LR =
Pr(E|Hp, I)
Pr(E|Hd, I)

,

=
Pr(GC, GM, GAF|Hp, I)
Pr(GC, GM, GAF|Hd, I)

,

=
Pr(GC|GM, GAF, Hp, I)
Pr(GC|GM, GAF, Hd, I)

×
Pr(GM, GAF|Hp, I)
Pr(GM, GAF|Hd, I)

,

=
Pr(GC|GM, GAF, Hp, I)
Pr(GC|GM, GAF, Hd, I)

× 1,

=
Pr(GC|GM, GAF, Hp, I)
Pr(GC|GM, GAF, Hd, I)

,

where the second term on the third line becomes 1 because the proba-
bilities of genotypes for the mother and alleged father do not depend
on whether the alleged father is the biological father (i.e., they only de-
pend on population genotype frequencies). To calculate the numerator
of the LR, we specify the maternal and paternal alleles received by the
child, designated as AM and AF, respectively, so that GC = (AM, AF).
The probability of the child’s genotype is then

Pr(GC|GM, GAF, Hp) = Pr(AM|GM)× Pr(AF|GAF, Hp).

In general, we do not know whic of the child’s alleles are maternally
and paternally derived. If the child is homozygous at the locus, we do
not need to know. For example, let GC = (Ai, Ai). Then the probability
of the child’s genotype under hypothesis Hp is

Pr(GC|GM, GAF, Hp) = Pr(AM = Ai|GM)× Pr(AF = Ai|GAF, Hp).

If the child is heterozygous at a locus, we must allow for both possible
sources of alleles. For example, let GC = (Ai, Aj). Then the probability
of the child’s genotype under hypothesis Hp is

Pr(GC|GM, GAF, Hp) = Pr(AM = Ai|GM)× Pr(AF = Aj|GAF, Hp)
+ Pr(AM = Aj|GM)× Pr(AF = Ai|GAF, Hp).

As an example, suppose that GC = (A1, A2), GM = (A1, A2) and
GAF = (A1, A1). By applying Mendel’s law of independent assortment
we have,

Pr(AM = A1|GM = (A1, A2)) = 0.5,
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Pr(AM = A2|GM = (A1, A2)) = 0.5,
Pr(AF = A1|GAF = (A1, A1)) = 1,
Pr(AF = A2|GAF = (A1, A1)) = 0.

In words, the heterozygous mother is equally likely to transmit either
of her two alleles, A1 or A2, while the homozygous father can only have
transmitted allele A1. The probability in the numerator for this example
is then,

Pr(GC = (A1, A2)|GM = (A1, A2), GAF = (A1, A1), Hp) =
Pr(AM = A2|GM = (A1, A2))× Pr(AF = A1|GAF = (A1, A1))
+Pr(AM = A1|GM = (A1, A2))× Pr(AF = A2|GAF = (A1, A1))
= (0.5× 1) + (0.5× 0) = 0.5. (8.1)

To calculate the denominator, we assume that the father is a male that is
randomly drawn from a population with allele frequencies p = (pA1 , pA2).
In that case,

Pr(GC = (A1, A2)|GM = (A1, A2), p, Hd) =
Pr(AM = A2|GM = (A1, A2))× pA1

+Pr(AM = A1|GM = (A1, A2))× pA2

=
1
2
(pA1 + pA2). (8.2)

The LR is then
0.5

0.5× (pA1 + pA2)
= 1/(pA1 + pA2).

The LR approaches 1 if either of the alleles A1 or A2 become common
(e.g., LR → 1 as either pA1 → 1 or pA2 → 1). Intuitively, as pA1 → 1,
it becomes more likely that the mother transmitted allele A2 (which is
rare in the population) and one of the common homozygous (A1, A1)
or heterozygous (A1, .) males in the population transmitted allele A1
and so it becomes as likely that another man (other than AF) was the
father. As pA2 → 1 individuals that carry allele A1 become rare and so
it becomes as likely that the mother transmitted allele A1 and one of the
common homozygous A2, A2), or heterozygous (A2, .) males transmit-
ted allele A2. In fact, in this example if there are only two alleles in the
population, A1 and A2, then LR = 1 regardless of the population allele
frequencies (because pA1 + pA2 = 1). If there is a third allele, then the
LR can become large as the frequency of the third allele increases and
the frequencies of alleles A1 and A2 both become small.
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8.2 Parentage probabilities using multiple loci

As in the case of DNA fingerprinting, we assume that marker loci are
unlinked (this is the case for the 13 marker loci in the CODIS database
which are often used for parentage analysis as well). Assuming no link-
age, we can calculate the LRi separately for each locus i and then mul-
tiply to obtain the final LR,

LR =
L

∏
i=1

LRi,

where there are L loci. To illustrate, we consider the simple case of L = 2
loci. Suppose that a child, mother and alleged father have the following
2 locus genotypes (where A denotes the first locus and B denotes the
second locus),

GC = {(A1, A2), (B1, B1)},
GM = {(A1, A1), (B1, B2)},

GAF = {(A1, A2), (B1, B1)},

and let the population allele frequencies be,

pA1 = 0.7,
pA2 = 0.3,
pB1 = 0.8,
pB2 = 0.2.

For locus A, the numerator is 1/2 and the denominator is pA2 , so LRA =
1/(2pA2). For locus B, the numerator is 1/2 and the denominator is
pB1 /2, so LRB = 1/pB1 . Thus the LR is,

LR = LRA × LRB =
1

2pA2

× 1
pB1

=
1

2pA2 pB1

=
1

2× 0.3× 0.8
= 2.083.

If we assume that Pr(Hp|I) = Pr(Hd|I) = 0.5 then the posterior proba-
bility of paternity is

Pr(Hp|E, I) =
LR

LR + 1
=

2.083
2.083 + 1

= 0.675.

Because alleles at both loci are relatively common there is not much
evidence for paternity in this case. If the father carries rare alleles, the
probability of paternity increases. For example, if the population allele
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frequencies were instead

pA1 = 0.99,
pA2 = 0.01,
pB1 = 0.01,
pB2 = 0.99,

then the LR becomes

LR =
1

2× 0.012 = 5000,

and the probability of paternity becomes

Pr(Hp|E, I) =
5000

5000 + 1
= 0.9998.



10
DNA Substitution Models

The evolutionary history of humans and other species can be inferred
by analyzing patterns of DNA nucleotide substitutions. The evolution-
ary history is represented as a phylogenetic tree describing the pat-
tern of shared ancestry of species and levels of molecular divergence
(branch lengths). If fossils are available to calibrate the ages of ancestors
for some nodes of the phylogeny, a “molecular clock” may sometimes
be used to infer the ages of other nodes without fossil calibrations. Here
we introduce basic concepts for modeling DNA substitutions between
species, estimating species divergence times and inferring phylogenetic
trees from sequence data.

10.1 Alignment of homologous sequences

The basic premise of a phylogenetic analysis is that sequences are in-
herited with modification from a common ancestor. A particular site in
a sequence is homologous in descendent species A and B if the site was
inherited from the same site of the sequence in the common ancestor of
A and B. If no changes occur in the descendent sequences alignment is
easy – just match up the sequences so that all paired sites have identical
nucleotides. Most often, changes will have occurred in the descendent
sequences, making alignment challenging. Sequences in descendents
may change due to mutation as well as insertion or delection of one or
more nucleotides. The goal of sequence alignment is to align homolo-
gous sites in two or more sequences descended from a common ances-
tral sequence. Most alignment algorithms do this by allowing sequence
“gaps” due to insertions or deletions (indels) as well as changes due
to point mutation. Penalties are applied for mismatches (substitutions)
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and for indels and a search is made for the alignment with the highest
score (fewest penalties). In this Chapter we will assume that an align-
ment is available and will focus on inferring phylogeny, etc, using a set
of aligned sequences.

10.2 Pairwise percentage of substitions

One simple measure of the level of molecular divergence between a
pair of species is the percentage of sites in the aligned sequences that
have different nucleotides, defined as

d =
x
n

,

where x is the number of sites at which the two species have different
nucleotides and n is the total number of sites in the sequence. A fixed
difference of a nucleotide in a sequence between species is referred to
as a DNA substitution. Note that a substitution occurs in two steps:
first, a new mutation arises in one of the species; second, the mutation
becomes fixed in the species due to processes such as genetic drift and
natural selection.

If genetic drift is the only process operating (e.g., changes at a site
are selectively neutral), Motoo Kimura showed that the rate of substi-
tution is equal to the site-specific mutation rate. This can be derived
as follows: at each generation, each diploid individual experiences a
mutation at a particular site with rate µ per homologous chromosome
and the expected number of new mutations in a diploid population of
size N is then 2Nµ. Under genetic drift, Sewall Wright showed that the
probability of fixation of an allele present in i copies is i/2N. A newly
arisen mutation is initially present as a single copy and therefore the
probability of fixation is 1/2N. Thus, the expected rate of substitution,
v, per generation is

v = 2Nµ× 1
2N

= µ.

In many genomic regions, nucleotide changes are not neutral (partic-
ularly in coding regions, or regulatory regions) and the rate of substi-
tution may be either increased (positive selection) or decreased (neg-
ative selection). For example, third codon positions are highly redun-
dant (many changes in the nucleotide at the third codon position do



56 DNA Substitution Models

not change the amino acid that is coded for) and thus tend to expe-
rience higher substitution rates than first, or second, codon positions;
this is because most proteins are under negative selection (e.g., changes
to the protein amino acid sequence have negative effects on fitness).

10.3 Modeling DNA substitutions

The percentage of substitutions tends to underestimate the actual num-
ber of substitutions that occurred because if multiple substitutions oc-
cur at a particular site this can regenerate the ancestral nucleotide in the
descendent making it appear as if no substitutions occurred. To deal
with this problem, an explicit model of DNA substitution is needed.
One of the earliest (and simplest) models of DNA substitution was de-
veloped by Jukes and Cantor in 1969. The JC69 model assumes that
mutations occur according to a Poisson probability distribution. The
probability that M substitutions occur at a particular nucleotide site
during a period of time, t, is then given by

Pr(M) =
e−νt(νt)M

M!
,

where ν is the rate of substitution per unit of time. The probability that
no substitutions occur is then

Pr(M = 0) = e−νt,

and the probability that one or more substitutions occur is

Pr(M ≥ 1) = 1− Pr(M = 0) = 1− e−νt.

The JC69 model further assumes that when a substitution occurs it re-
sults in a change to any of the 4 nucleotides with equal probability, 1/4.
Given this model, the probability that one or more substitutions occur
at a site that change an ancestral allele T to an allele A in the descendent
after time t is

pTA(t) = (1− e−νt)
1
4

.

The first term of the above equation is the probability that one or more
substitutions occur during time t. The second term is the probability
that the last substitution to occur generated nucleotide A. The proba-
bility that the descendent has the ancestral allele T after time t is

pTT(t) = e−νt + (1− eνt)
1
4

=
1
4

+
3
4

e−νt.
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The first term of the above equation gives the probability that no substi-
tutions occurred during time t (in which case both the ancestral and de-
scendent site have nucleotide T) and the second terms gives the proba-
bility that one or more substitutions occurred and the final substitution
generated allele T.

10.4 Substitution proportions under JC69 model

We can determine the expected proportion of sites with substitutions
between a pair of sequences from species that separated t time units in
the past as follows

pi $=j(t) = (1− e−νt)
3
4

.

This is just the probability that one or more substitutions occur mul-
tiplied by the probability that the final substitution is to a nucleotide
other than the ancestral nucleotide. This gives the probability of a sub-
stitution for a particular site; if sites are assumed to be independent
then this also gives the expected proportion of sites with substitutions.
Similarly, the expected proportion of sites that are identical is

pi=j(t) = e−νt + (1− eνt)
1
4

=
1
4

+
3
4

e−νt.

In the derivations above we allow a nucleotide to change to itself. Nor-
mally, a change to the same state would not be considered a substi-
tution. To deal with this, we modify the substitution rate so that only a
fraction 3/4 of the changes are considered substitutions (e.g., those that
result in a different nucleotide). Therefore, we define a “corrected” rate,
v as

v =
3
4

ν.

Solving for ν as a function of v gives

ν =
4
3

v.

Replacing ν by 4
3 v in all the previously derived equations generates the

standard formulas for the JC69 model.
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10.5 JC69 distance and divergence time

The proportion of nucleotide substitutions between a pair of sequences
from different species can be used to estimate the divergence time if
we assume that the substitution rate is identical in the two species (this
is known as the molecular clock hypothesis). The total time separating
the two sequences is twice the divergence time. Solving for t in the JC69
formula for the expected proportion of substitutions gives,

t̂ = −1
v

(
3
4

)
log(1− 4/3p̂),

where p̂ is the observed proportion of substitutions between a pair of
sequences. If the substitution rate, v, is known then the divergence time
between the species can be estimated as t̂/2. As an example, the propor-
tion of substitutions in non-coding nuclear DNA sequences between
human and chimpanzee is roughly 0.010 to 0.015. The rate of mutation
in mammalian nuclear genes is roughly v = 10−9 per year and assum-
ing that the non-coding regions are neutral we can use the mutation
rate as an estimate of the substitution rate. The predicted divergence
time between human and chimpanzee is then

1
2

t̂ = −1
2
× 1

10−9

(
3
4

)
log(1− 4/3× 0.01) = 5033633,

or about 5 MYA assuming p̂ = 0.01 or

1
2

t̂ = −1
2
× 1

10−9

(
3
4

)
log(1− 4/3× 0.015) = 7576015,

or about 7.5 MYA assuming p̂ = 0.015.

10.6 Kimura 2 parameter model

The JC69 model is not very realistic for human sequence data because
it assumes that transitions are as likely as transversions. Empirical ev-
idence from comparisons among species (as well as experimental evi-
dence from mutation studies) suggests that transitions are much more
likely than transversions. In 1980, Kimura proposed a more realistic
model of DNA substitution that allows for different rates of transi-
tion versus transversion. In the so-called Kimura 2 parameter model
(or K80), there are two parameters. The first parameter is the relative



10.6 Kimura 2 parameter model 59

rate of transitions versus transversions,

κ =
α

β
,

where α is the rate of transitions and β is the rate of transversions. The
second parameter is the overall substitution rate v defined as

v = α + 2β.

Under this model, the probability of a transition is

p1(t) =
1
4

+
1
4

e−4vt/(κ+2) − 1
2

e−2vt(κ+1)/(κ+2),

and the probability of a transversion is

p2(t) =
1
4
− 1

4
e−4vt/(κ+2).

This formulation produces two equations (for p1(t) and p2(t)) in two
unknowns (κ and t). Letting S = p1(t) and V = 2p2(t) be the expected
proportions of transitions and transversions among a sample of inde-
pendently evolving sites and solving for κ and t gives,

t̂ = −1
v

(
1
2

log(1− 2S−V)− 1
4

log(1− 2V)
)

,

and,

κ̂ =
2 log(1− 2S−V)

log(1− 2V)
− 1.
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Linkage Analysis

Strictly speaking, Mendel’s law of independent of assortment only ap-
plies to loci that are located on different chromosomes. However, the
process of recombination during meiosis in humans and other species
can create partial independence between marker loci located on the
same chromosome. Early work in Drosophila and other species showed
that the expected fraction of recombinant haplotypes depends on the
physical distance separating loci. The greater the distance, the greater
the fraction of recombinants. In humans, co-segregation of marker loci
can be observed by genotyping individuals in pedigrees. These “link-
age analysis” studies were used to create the first genetic maps (linkage
maps) of the locations of markers on chromosomes. In the post-genomic
era, linkage analysis has been used to study variation in recombination
rates across the human genome and as a preliminary step for locating
gene mutations that are a cause of disease. Here, we describe the basic
elements of linkage analysis and provide some example applications to
the estimation of recombination rates in humans, inference of linkage
maps, and disease gene mapping.

14.1 Probability model of recombination

In humans, recombination occurs during meiosis at the stage after the
maternal and paternal chromosomes have been replicated. A character-
istic structure forms called a chiasma that is associated with a double
stranded cleavage of DNA and exchange of segments between a pair
of randomly chosen chromatids. Each replicated chromosome (or sis-
ter chromatid) participates in half the chiasma on average. Let n be the
number of chiasma formed on the interval. Let rn be the probability
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that a gamete is recombinant if there are n chiasma. Note that r0 = 0.
A recursive formula can be written for the probability that a gamete is
recombinant given n chiasma,

rn =
1
2

rn−1 +
1
2
(1− rn−1),

where the first term of the sum is the probability that the gamete does
not participate in the nth crossover multiplied by the probability that it
is recombinant after n− 1 crossovers (in which case it is still recombi-
nant), and the second term is the probability that the gamete does par-
ticipate in the nth crossover multiplied by the probability that it was not
recombinant after n− 1 crossovers (in which case it becomes recombi-
nant). By direct substitution, we see that

r1 =
1
2

r0 +
1
2
(1− r0) =

1
2

0 +
1
2
(1− 0) =

1
2

,

and

r2 =
1
2

r1 +
1
2
(1− r1) =

1
2
× 1

2
+

1
2

(
1− 1

2

)
=

1
2

,

and in general rn = 1/2 if n > 0.

14.2 Haldane’s map function

A useful measure of the distance between markers on a chromosome
is the expected fraction of recombinant gametes, θ. A simple model of
recombination developed in the 1930s by J.B.S. Haldane assumes that
double-stranded breaks (and chiasma) form with equal intensity along
the interval between a pair of markers. The physical length of the in-
terval, d, is assumed to be large and the rate of breaks (chaisma) is as-
sumed to be small. This results in a Poisson distribution for the number
of chiasma formed on the interval during meiosis. Let θ be the recom-
bination fraction (per meiosis) between markers A and B. The expected
fraction of recombinant gametes is,

θ =
1
2

Pr(n > 0).

Assuming that chiasma form with rate c per Mb on the interval between
a pair of markers, A and B, according to a Poisson distribution,

Pr(n) =
e−cd(cd)n

n!
,
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where d is the distance between A and B in units of Mb. For the Poisson
distribution, we have

Pr(n > 0) = 1− Pr(n = 0) = 1− e−cd,

and therefore

θ =
1
2
(1− e−cd). (14.1)

Note that as cd becomes small θ tends to zero and as cd becomes large θ
tends to 1/2, these are the minimum and maximum observable recom-
binant fractions of gametes. If θ = 1/2 we say that the loci are unlinked,
while if θ = 0 we say that they are in complete linkage.

14.3 Inferring recombination rates

By genotyping parents and children and observing the frequency of re-
combinant haplotypes in the children of particular pairs of parents we
can use genotyped individuals from a pedigree to infer rates of recom-
bination in a specific region of the genome. We first consider a simple
estimator of recombination rate, c, using a so-called linear approxima-
tion. The exponential function can be represented as an infinite series
(here we have used a Taylor series expanded about the point x = 0),

e−x = 1− x +
x2

2
− x3

6
+

x4

24
− · · ·

If x is small, terms such as x2, x3, etc, will be small and can be neglected,
leading to the approximation,

e−x ≈ 1− x.

Substituting this approximation for e−x into equation 14.1 above (with
x = cd) gives,

θ ≈ 1
2
(1− [1− cd]) =

1
2

cd.

Solving the above equation for c in terms of θ and d gives the estimator,

ĉ1 ≈
2θ

d
This estimator will only be accurate if θ ≤ 0.01. An estimator can also
be obtained without the linear approximation by solving equation 14.1
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for c directly,

ĉ2 = −1
d

log(1− 2θ).

The recombination fraction is usually measured in units of centimor-
gans (cM), named after the famous Drosophila geneticist Thomas Hunt
Morgan. 1 cM equals 1% recombination (a fraction 0.01) per meiosis.
The rate c is often presented in units of cM/Mb.

As an example, consider a collection of 500 unrelated family trios
(parents plus one child) for which the recombinant haplotypes of chil-
dren in a region targeted for genotyping could be unambiguously iden-
tified. Let the number of recombinant maternally-derived haplotypes
be Ym = 124 and let the number of recombinant paternally-derived
haplotypes be Yp = 86. The total fraction of recombinants is

θ =
124 + 86

1000
= 0.21.

Using the approximate estimator gives

ĉ1 =
2× 0.21

1.6
= 0.2625 = 26.25 cM/Mb.

The exact estimator gives,

ĉ2 = − 1
1.6

log(1− 2× 0.21) = 0.340 = 34 cM/Mb.

In this example, there is a considerable discrepancy between the ap-
proximate and exact estimators (this is expected since θ is large) and
the exact estimator should be more accurate in this case. Note that in
the above analysis, we have estimated the sex-averaged recombination
rate. There is considerable variation between rates of recombination in
males and females and they are often estimated separately.

14.4 Linkage maps

A linkage map arranges genetic markers of unknown location in a genome
into ordered arrangements on chromosomes based on a comparison
of relative rates of recombination (or observed propotions of recom-
binants). Less recombination between markers implies that they are
physically closer to one another on a chromosome. One simple proce-
dure is to use pairwise values of θ to order markers on a chromosome.
For example, with three genetic markers, A, B and C, if the pairwise
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recombination proportions are θAB = 0.01, θBC = 0.05 and θAC = 0.06
the optimal ordering would be A-B-C.

14.5 Linkage mapping of disease genes

The objective of linkage mapping is to estimate the recombination pro-
portion, θ, between one or more genetic markers and an unobserved
disease locus. Linkage mapping is most effective for so-called simple
Mendelian genetic disorders. The recurrence of simple Mendelian dis-
orders is completely determined by genotype. The “penetrance” of a
genotype at a disease locus is defined as the probability of develop-
ing the disease given the genotype, Pr(disease|genotype). For a disease
locus with two classes of alleles (e.g., disease alleles, D, and normal
alleles, d) there are three penetrance parameters,

f1 = Pr(disease|DD)
f2 = Pr(disease|Dd)
f3 = Pr(disease|dd).

For a simple recessive Mendelian disorder f1 = 1, f2 = 0 and f3 = 0,
while for a simple dominant disorder f1 = f2 = 1 and f3 = 0. The
parameter f3 is referred to as the phenocopy rate (e.g., the rate at which
individuals without any disease alleles develop the disease). Most sim-
ple Mendelian disorders such as cystic fibrosis (a recessive disorder)
have a phenocopy rate of zero.

To develop the theory underlying linkage mapping of disease genes,
we consider the specific case of a rare dominant disease caused by an
allele D at a disease locus, with d to be the normal allele. We assume
complete penetrance ( f1 = f2 = 1) and no phenocopies ( f3 = 0). Be-
cause the disease allele is rare, we can assume that our families are com-
prised entirely of those where one parent is an affected individual with
a heterozygous genotype at the disease locus, Dd, and the other is a
non-affected individual with disease locus genotype dd. This is because
if pD is the frequency of the disease allele, D, under HWE,

f (DD) = p2
D,

f (Dd) = 2pD(1− pD),
f (Dd× Dd) = f (Dd)2 = (2pD(1− pD)2)2,
f (Dd× dd) = f (Dd)× f (dd) = pD(1− pD)× (1− pD)2,
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where f (Dd× dd) denotes the frequency of matings between individu-
als with Dd and dd, genotypes, etc. The frequencies f (Dd) and f (Dd×
dd) are proportional to the allele frequency pD, whereas the other fre-
quencies, f (Dd× Dd), etc, are proportional to p2

D. Thus, for a rare dis-
ease allele with pD → 0 we can neglect all genotypes and matings other
than Dd and Dd× dd.

The possible genotypes at a marker locus for trios of families with
one affected parent that is heterozygous at the marker locus, P1 =
(Dd, Aa), one unaffected parent that is homozygous at the marker lo-
cus, P2 = (dd, aa), and one child, C, (either affected, or unaffected) are
P1 = Aa, P2 = aa, C = Aa and P1 = Aa, P2 = aa, C = aa. Under
the null hypothesis, marker allele A is linked to disease allele D and
marker allele a is linked to disease allele d. The possible gametes pro-
duced by each parent (and their probabilities) are shown in Table 14.1.
The probability for each of the 4 possible combinations of disease status

Parent genotype Gamete Probability
Aa/Dd A-D (1/2)(1− θ)
Aa/Dd A-d (1/2)θ
Aa/Dd a-D (1/2)θ
Aa/Dd a-d (1/2)(1− θ)
aa/dd a-d 1

Table 14.1 Probabilities of each possible gamete for parents with genotypes
Aa/Dd and aa/dd assuming linkage of the marker to the disease locus with

parameter θ

and marker genotype in children are given in Table 14.2 The transmis-

Child genotype Child disease status Probability No. Families
Aa affected (1/2)(1− θ) Y1
Aa normal (1/2)θ Y2
aa affected (1/2)θ Y3
aa normal (1/2)(1− θ) Y4

Table 14.2 Probabilities of each possible combination of marker genotype and
disease status in a child born to parents with genotypes Aa/Dd and aa/dd

assuming linkage of the marker to the disease locus with parameter θ.

sion of disease and marker alleles within families are independent and
so the probabilities multiply to obtain the total probability of the ob-
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served counts of families with each of the four possible configurations
of marker genotype and disease status for the child,

Pr(Y1, Y2, Y3, Y4|θ) =
4

∏
i=1

Pr(Yi|θ),

=
[

1
2
(1− θ)

]Y1

×
[

1
2

θ

]Y2

×
[

1
2

θ

]Y3

×
[

1
2
(1− θ)

]Y4

,

=
[

1
2
(1− θ)

]Y1+Y4
[

1
2

θ

]Y2+Y3

.

To estimate θ by the method of maximum likelihood we search for a
value of θ that maximizes the probability of the observed data as calcu-
lated above. By convention, the base 10 logarithm of the probability is
maximized which is equivalent to maximizing the probability directly.
The base 10 logarithm of the probability is called the lod score, z(θ). For
the rare dominant disorder outlined above the lod score is,

z(θ) = (Y1 + Y4) log10([1− θ][1/2]) + (Y2 + Y3) log10(θ[1/2]).

If the lod score is maximized at θ = 0.5 this indicates no linkage of the
marker locus to a disease locus. If it is maximized at θ = 0 this indicates
a very tight linkage.


